Skip to main content
Log in

Flatworms like it round: nematode consumption by Planaria torva (Müller 1774) and Polycelis tenuis (Ijima 1884)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The aim of this study was to enhance current knowledge of thus far largely neglected meiofaunal–macrofaunal trophic channels in freshwater ecosystems. The strength and shape (functional response) of the predator–prey interaction between two freshwater triclad flatworm species (Polycelis tenuis and Planaria torva) and individuals of the nematode species Caenorhabditis elegans were measured in a set of laboratory experiments. We hypothesized that feeding on adult nematodes results in a hyperbolic type II, whereas juvenile prey led to sigmoidal type III functional response and that different habitat textures would affect predation success by providing refuge for prey. However, our results revealed that both flatworm species exhibited type III sigmoidal functional response curves and the smallest predator consistently ingested larger amounts of nematodes. Generally, our results suggest the existence of a strong predator–prey interaction, given that both flatworms daily ingested a significant proportion of their biomass by feeding only on nematodes (up to 30% for P. tenuis). However, P. torva was unable to process nematodes in sandy sediment, and the ingestion rates of both flatworm species were reduced in a complex litter habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alexander, M. E., J. T. A. Dick & N. E. O’Connor, 2013. Trait-mediated indirect interactions in a marine intertidal system as quantified by functional responses. Oikos 122: 1521–1531.

    Article  Google Scholar 

  • Andrássy, I., 1956. Die Rauminhalts- und Gewichtsbestimmung der Fadenwuermer (Nematoda). Acta Zoologica Budapest 2: 1–15.

    Google Scholar 

  • Armitage, M. J. & J. O. Young, 1990. The realized food niches of three species of stream-dwelling triclads (Turbellaria). Freshwater Biology 24: 93–100.

    Article  Google Scholar 

  • Ball, I. R. & T. B. Reynoldson, 1981. British Planarians. Cambridge University Press, Cambridge.

    Google Scholar 

  • Barrios-O’Neill, D., J. T. A. Dick, M. C. Emmerson, A. Ricciardi & H. J. MacIsaac, 2015. Predator-free space, functional responses and biological invasions. Functional Ecology 29: 377–384.

    Article  Google Scholar 

  • Barrios-O’Neill, D., R. Kelly, J. T. A. Dick, A. Ricciardi, H. J. MacIsaac & M. C. Emmerson, 2016. On the context-dependent scaling of consumer feeding rates. Ecology Letters 19: 668–678.

    Article  PubMed  Google Scholar 

  • Begon, M., J. L. Harper & C. R. Townsend, 1996. Ecology: individuals, populations, and communities. Blackwell, Oxford.

    Book  Google Scholar 

  • Beier, S. & W. Traunspurger, 2003a. Temporal dynamics of meiofauna communities in two small submountain carbonate streams with different grain size. Hydrobiologia 498: 107–131.

    Article  Google Scholar 

  • Beier, S. & W. Traunspurger, 2003b. Seasonal distribution of freeliving nematodes in the Krähenbach, a fine- grained submountain carbonate stream in Southwest Germany. Nematology 5: 113–136.

    Article  Google Scholar 

  • Beier, S., M. Bolley & W. Traunspurger, 2004. Predator-prey interactions between Dugesia gonocephala and free-living nematodes. Freshwater Biology 49: 77–86.

    Article  Google Scholar 

  • Benke, A. C., A. D. Huryn, L. A. Smock & B. Wallace, 1999. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society 18: 308–343.

    Article  Google Scholar 

  • Bergtold, M. & W. Traunspurger, 2005. Benthic production by micro-, meio-, and macrobenthos in the profundal zone of an oligotrophic lake. Journal of the North American Benthological Society 24: 321–329.

    Article  Google Scholar 

  • Bolker, B. M., 2014. bbmle: tools for general maximum likelihood estimation. R Package version 1.0.17. http://cran.r-project.org/package=bbmle.

  • Feller, R. J. & R. M. Warwick, 1988. Energetics. In Higgins, R. P. & H. Thiel (eds), Introduction to the study of meiofauna. Smithsonian Institution Press, Washington: 181–196.

    Google Scholar 

  • Findeis, P. M., C. J. Barinaga, J. D. Willet & S. O. Farwell, 1983. Age-synchronous culture of Caenorhabditis elegans: technique and applications. Experimental Gerontology 18: 263–275.

    Article  PubMed  CAS  Google Scholar 

  • Folsom, T. C. & H. F. Clifford, 1978. The population biology of Dugesia tigrina (Platyhelminthes: Turbellaria) in a thermally enriched Alberta, Canada Lake. Ecology 59: 966–975.

    Article  Google Scholar 

  • Hakenkamp, C. C., A. Morin & D. L. Strayer, 2002. The functional importance of freshwater meiofauna. In Rundle, S. D., A. L. Robertson & J. M. Schmid-Araya (eds), Freshwater Meiofauna: Biology and Ecology. Backhuys, Leiden: 321–335.

    Google Scholar 

  • Hassell, M. P., 1978. The dynamics of arthropod predator- prey systems. Princeton University Press, Princeton.

    Google Scholar 

  • Hassell, M. P., J. H. Lawton & J. R. Beddington, 1976. The components of arthropod predation: I. The prey death-rate. Journal of Animal Ecology 45: 135–164.

    Article  Google Scholar 

  • Hassell, M. P., 2000. The Spatial and Temporal Dynamics of Host-Parasitoid Interactions. Oxford University Press, London.

    Google Scholar 

  • Hildrew, A. G., 1992. Food webs and species interactions. In Calow, P. & G. E. Petts (eds), The Rivers Handbook. Blackwell Scientific Publications, Oxford: 309–330.

    Google Scholar 

  • Hohberg, K. & W. Traunspurger, 2005. Predator-prey interactions in soil food web: functional response, size-dependent foraging efficiency, and the influence of soil texture. Biology and Fertility of Soils 41: 419–427.

    Article  Google Scholar 

  • Holling, C. S., 1959. The components of predation as revealed by a study of small mammal predation of the European pine sawfly. The Canadian Entomologist 91: 293–320.

    Article  Google Scholar 

  • Humphries, A. T., M. K. La Peyre & G. A. Decossas, 2011. The effect of structural complexity, prey density, and “predator- free space” on prey survivorship at created oyster reef mesocosms. PLoS ONE 6: e28339.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jennings, J. B., 1957. Studies on feeding, digestion, and food storage in free-living flatworms (Platyhelminthes: Turbellaria). Biological Bulletin 112: 63–80.

    Article  Google Scholar 

  • Jeschke, J. M., M. Kopp & R. Tollrian, 2002. Predator functional responses: discriminating between handling and digesting prey. Ecological Monographs 72: 95–112.

    Article  Google Scholar 

  • Jeschke, J. M., M. Kopp & R. Tollrian, 2004. Consumer-food systems: why type I functional responses are exclusive to filter feeders. Biological Reviews 79: 337–349.

    Article  PubMed  Google Scholar 

  • Juliano, S. A., 2001. Nonlinear curve fitting. In Scheiner, S. M. & J. Gurevitch (eds), Design and Analysis of Ecological Experiments, 2nd ed. Oxford University Press, Oxford: 178–196.

    Google Scholar 

  • Kalinkat, G., U. Brose & B. C. Rall, 2013a. Habitat structure alters top-down control in litter communities. Oecologia 172: 877–887.

    Article  PubMed  Google Scholar 

  • Kalinkat, G., F. D. Schneider, C. Digel, C. Guill, B. C. Rall & U. Brose, 2013b. Body masses, functional responses and predator-prey stability. Ecology Letters 16: 1126–1134.

    Article  PubMed  Google Scholar 

  • Majdi, N. & W. Traunspurger, 2015. Free-living nematodes in the freshwater food web: a review. Journal of Nematology 47: 28–44.

    PubMed  PubMed Central  Google Scholar 

  • Majdi, N., M. Tackx & E. Buffan- Dubau, 2012. Trophic positioning and microphytobenthic carbon uptake of biofil- dwelling meiofauna in a temperate river. Freshwater Biology 57: 1180–1190.

    Article  CAS  Google Scholar 

  • Majdi, N., A. Boiché, W. Traunspurger & A. Lecerf, 2014. Predator effects on a detritus-based food web are primarily mediated by non-trophic interactions. Journal of Animal Ecology 83: 953–962.

    Article  PubMed  Google Scholar 

  • Majdi, N., B. Kreuzinger-Janik & W. Traunspurger, 2016. Effects of flatworm predators on sediment communities and ecosystem functions: a microcosm approach. Hydrobiologia 776: 193–207.

    Article  Google Scholar 

  • Majdi, N., I. Threis & W. Traunspurger, 2017. It’s the little things that count: meiofaunal density and production in the sediment of two headwater streams. Limnology and Oceanography 62: 151–163.

    Article  Google Scholar 

  • Marinelli, R. L. & B. C. Coull, 1987. Structural complexity and juvenile fish predation on meiobenthos: an experimental approach. Journal of Experimental Marine Biology and Ecology 108: 67–81.

    Article  Google Scholar 

  • Mathieu, M., J. Leflaive, L. Ten- Hage, R. de Wit & E. Buffan-Dubau, 2007. Free-living nematodes affect oxygen turnover of artificial diatom biofilms. Aquatic Microbial Ecology 49: 281–291.

    Article  Google Scholar 

  • Mckee, M., F. Wrona, G. Scrimgeour & J. Culp, 1997. Importance of consumptive and non-consumptive prey mortality in a coupled predator-prey system. Freshwater Biology 38: 193–201.

    Article  Google Scholar 

  • Montoya, J. M., S. L. Pimm & R. V. Solé, 2006. Ecological networks and their fragility. Nature 442: 259–264.

    Article  PubMed  CAS  Google Scholar 

  • Murdoch, W. W. & R. J. Marks, 1973. Predation by coccinellid beetles: experiments on switching. Ecology 54: 160–167.

    Article  Google Scholar 

  • Murdoch, W. W., S. Avery & M. E. B. Smyth, 1975. Switching in predatory fish. Ecology 56: 1094–1105.

    Article  Google Scholar 

  • Muschiol, D., M. Marković, I. Threis & W. Traunspurger, 2008. Predator-prey relationship between the cyclopoid copepod Diacyclops bicuspidatus and a free-living bacterivorous nematode. Nematology 10: 55–62.

    Article  Google Scholar 

  • Oaten, A. & W. W. Murdoch, 1975. Predator switching, functional response, and stability. American Naturalist 109: 299–318.

    Article  Google Scholar 

  • Pickavance, J. R., 1971a. The diet of the immigrant Planarian Dugesia tigrina (Girard): I. Feeding in the Laboratory. Journal of Animal Ecology 40: 623–635.

    Article  Google Scholar 

  • Pickavance, J. R., 1971b. The diet of the immigrant Planarian Dugesia tigrina (Girard): II. Food in the wild and comparison with some british species. Journal of Animal Ecology 40: 637–650.

    Article  Google Scholar 

  • Pritchard, D. W., 2014. frair: functional response analysis in R. R Package version 0.4. http://cran.r-project.org/package=frair.

  • Pritchard, D. W., R. A. Paterson, H. C. Bovy & D. Barrios-O´Neill, 2017. Frair: an R package for fitting and comparing consumer functional responses. Methods in Ecology and Evolution 8: 1528–1534.

    Article  Google Scholar 

  • Ptatscheck, C., B. Kreuzinger-Janik, H. Putzki & W. Traunspurger, 2015. Insights into the importance of nematode prey for chironomid larvae. Hydrobiologia 757: 143–153.

    Article  Google Scholar 

  • Rall, B. C., C. Guill & U. Brose, 2008. Food-web connectance and predator interference dampen the paradox of enrichment. Oikos 117: 202–213.

    Article  Google Scholar 

  • R Development Core Team, 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Real, L. A., 1977. The kinetics of functional response. The American Naturalist 111: 289–300.

    Article  Google Scholar 

  • Reiss, J. & J. M. Schmid-Araya, 2010. Life history allometries and production of small fauna. Ecology 91: 497–507.

    Article  PubMed  Google Scholar 

  • Reynoldson, T. B., 1960. A quantitative study of the population biology of Polycelis tenuis (Ijima) (Turbellaria, Tricladida). Oikos 11: 125–141.

    Article  Google Scholar 

  • Reynoldson, T. B. & P. Bellamy, 1975. Triclads (Turbellaria: Tricladida) as predators of lake-dwelling stonefly and mayfly nymphs. Freshwater Biology 5: 305–312.

    Article  Google Scholar 

  • Reynoldson, T. B. & R. W. Davies, 1970. Food niche and coexistence in lake-dwelling triclads. Journal of Animal Ecology 39: 599–617.

    Article  Google Scholar 

  • Reynoldson, T. B. & B. Pearce, 1979. Predation on snails by three species of triclad and its bearing on the distribution of Planaria torva. Journal of Zoology 189: 459–484.

    Article  Google Scholar 

  • Reynoldson, T. B. & A. D. Sefton, 1976. The food of Planaria torva (MÜLLER) (Turbellaria-Tricladida), a laboratory and field study. Freshwater Biology 6: 383–393.

    Article  Google Scholar 

  • Reynoldson, T. B. & J. O. Young, 1963. The food of four species of lake-dwelling triclads. Journal of Animal Ecology 32: 175–191.

    Article  Google Scholar 

  • Rogers, D., 1972. Random search and insect population models. Journal of Animal Ecology 41: 369–383.

    Article  Google Scholar 

  • Sarnelle, O. & A. E. Wilson, 2008. Type III functional response in Daphnia. Ecology 89: 1723–1732.

    Article  PubMed  Google Scholar 

  • Sarnelle, O., J. D. White, T. E. Geelhoed & C. L. Kozel, 2015. Type III functional response in the zebra mussel, Dreissena polymorpha. Canadian Journal of Fisheries and Aquatic Sciences 72: 1202–1207.

    Article  Google Scholar 

  • Schmid-Araya, J. M. & P. E. Schmid, 2000. Trophic relationships: integrating meiofauna into a realistic benthic food web. Freshwater Biology 44: 149–163.

    Article  Google Scholar 

  • Schmid-Araya, J. M., A. G. Hildrew, A. Robertson, P. E. Schmid & J. Winterbottom, 2002a. The importance of meiofauna in food webs: evidence from an acid stream. Ecology 83: 1271–1285.

    Article  Google Scholar 

  • Schmid-Araya, J. M., P. E. Schmid, A. Robertson, J. Winterbottom, C. Gjerløv & A. G. Hildrew, 2002b. Connectance in stream food webs. Journal of Animal Ecology 71: 1056–1062.

    Article  Google Scholar 

  • Schmid-Araya, J. M., P. E. Schmid, S. P. Tod & G. F. Esteban, 2016. Trophic positioning of meiofauna revealed by stable isotopes and food web analyses. Ecology 97: 3099–3109.

    Article  PubMed  Google Scholar 

  • Schroeder, F., L. Peters & W. Traunspurger, 2012. Temporal variations in epilithic nematode assemblages in lakes of different productivities. Fundamental Applied Limnology 181: 143–157.

    Article  Google Scholar 

  • Solomon, M. E., 1949. The natural control of animal populations. Journal of Animal Ecology 18: 1–35.

    Article  Google Scholar 

  • Spieth, H. R., T. Möller, C. Ptatscheck, A. Kazemi-Dinan & W. Traunspurger, 2011. Meiobenthos provides a food resource for young cyprinids. Journal of Fish Biology 78: 138–149.

    Article  PubMed  CAS  Google Scholar 

  • Sulston, J. & J. Hodgkin, 1988. Methods. In Wood, W. B. (ed.), The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, Plainview: 587–606.

    Google Scholar 

  • Teal, J. M., 1957. Community metabolism in a temperate cold spring. Ecological Monographs 27: 283–302.

    Article  Google Scholar 

  • Toscano, B. J. & B. D. Griffen, 2013. Predator size interacts with habitat structure to determine the allometric scaling of the functional response. Oikos 122: 454–462.

    Article  Google Scholar 

  • Traunspurger, W., 1996a. Distribution of benthic nematodes in the littoral of an oligotrophic lake (Königssee, Nationalpark Berchtesgaden, FRG). Archiv für Hydrobiologie 135: 393–412.

    Google Scholar 

  • Traunspurger, W., 1996b. Distribution of benthic nematodes in the littoriprofundal and profundal of an oligotrophic lake (Königssee, Nationalpark Berchtesgaden, FRG). Archiv für Hydrobiologie 135: 555–575.

    Google Scholar 

  • Traunspurger, W., M. Bergtold & W. Goedkoop, 1997. The effects of nematodes on bacterial activity and abundance in a freshwater sediment. Oecologia 112: 118–122.

    Article  PubMed  Google Scholar 

  • Traunspurger, W., S. Höss, A. Witthöft-Mühlmann, M. Wessels & H. Güde, 2012. Meiobenthic community patterns of oligotrophic and deep Lake Constance in relation to water depth and nutrients. Fundamental Applied Limnology 180: 233–248.

    Article  CAS  Google Scholar 

  • Vucic-Pestic, O., B. C. Rall, G. Kalinkat & U. Brose, 2010. Allometric functional response model: body masses constrain interaction strengths. Journal of Animal Ecology 79: 249–256.

    Article  PubMed  Google Scholar 

  • Ward, J. V., G. Bretschko, M. Brunke, D. Danielopol, J. Gilbert, T. Gonser & A. G. Hildrew, 1998. The boundaries of river systems: the metazoan perspective. Freshwater Biology 40: 531–569.

    Article  Google Scholar 

  • Weber, S. & W. Traunspurger, 2015. The effects of predation by juvenile fish on the meiobenthic community structure in a natural pond. Freshwater Biology 60: 2392–2409.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Stefanie Gehner for technical assistance and to Birgit Gansfort and Benjamin Wilden for their help with the statistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bianca Kreuzinger-Janik.

Additional information

Handling editor: Diego Fontaneto

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreuzinger-Janik, B., Kruscha, S., Majdi, N. et al. Flatworms like it round: nematode consumption by Planaria torva (Müller 1774) and Polycelis tenuis (Ijima 1884). Hydrobiologia 819, 231–242 (2018). https://doi.org/10.1007/s10750-018-3642-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3642-8

Keywords

Navigation