Skip to main content

Advertisement

Log in

Influence of ionic strength and conductivity on benthic diatom communities in a tropical river (Monjolinho), São Carlos-SP, Brazil

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Benthic diatoms are important indicators of ecological conditions in lotic systems. The objective of this study was to elucidate the confounding effects of eutrophication, organic pollution and ionic strength and conductivity on benthic diatom communities. Benthic diatoms and water quality sampling was done at 10 sites during summer base flow period (2008 and 2009). Detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) were used to determine environmental gradients along which species vary with respect to ionic strength and conductivity and other environmental variables. Using variance partitioning, we assessed the individual importance of a set of environmental variables (eutrophication and organic pollution) versus ionic strength and conductivity on diatom community structure. The effects of ionic strength and conductivity and organic pollution, eutrophication and other environmental variables were integrated into overall resultant benthic diatom communities. Through partial CCA, we partitioned the variance in diatom data between two sets of exploratory variables, i.e. ionic strength and conductivity (26.9%); other variables, particularly eutrophication and organic pollution (23.0%); shared variance (11.3%) and unexplained variance (38.8%). Due to the interaction of the effects of ionic strength and conductivity and other variables in this study, laboratory experiments must be performed to confirm the observed effects of ionic strength and conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • APHA & M. A. H. Franson (eds), 1988. Standard Methods for the Examination of Water and Waste Water, 20th ed. American Public Health Association, Washington, DC.

  • Bere, T. & J. G. Tundisi, 2009. Weighted average regression and calibration of conductivity and pH of benthic diatoms in streams influenced by urban pollution – Sao Carlos/SP Brazil. Acta Limnol Brasilliansea 21: 317–325.

    Google Scholar 

  • Bicudo, C. E. M. & M. Menezes, 2006. Gêneros de água de águas continentais do Brazil: chave para identificação e descrições. Rima Editora, São Carlos-SP Brazil: 391–339.

  • Biggs, B. J. F. & C. Kilroy, 2000. Stream priphyton monitoring manual. NIWA, Christchurch, New Zealand.

    Google Scholar 

  • Boisson, J. C. & Y. Perrodia, 2006. Effects of runoff on biomass and metabolic activity of periphyton in experimental streams. Journal of Hazardus Material A132: 148–154.

    Article  Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Article  Google Scholar 

  • Boston, H. L., W. R. Hill & A. J. Stewart, 1991. Evaluating direct toxicity and food chain effects in aquatic systems using natural periphyton communities. In: J. W. Gorsuch, W. R. Lower, & K. R. St. John (eds.), Plants for Toxicity Assessment, Vol. 2. ASTM STP 1115, Philadelphia, PA: 126–145.

  • Carpenter, K. D. & I. R. Waite, 2000. Relations of habitat-specific algal assemblages to land-use and water chemistry in the Willamette Basin, Oregon. Environmetal Monitoring and Assesment 64: 247–257.

    Article  CAS  Google Scholar 

  • Cohn, S. A. & N. C. Disparti, 1994. Environmental factors influencing diatom cell motility. Journal of Phycology 30: 818–828.

    Article  Google Scholar 

  • Defew, E. C., D. M. Paterson & S. E. Hagerthey, 2002. The use of natural microphytobenthic assemblages as laboratory model systems. Marine Ecology Progress Series 237: 15–25.

    Google Scholar 

  • Dickson, K. L., J. R. Cairns, B. C. Gregg, D. I. Messenger, J. L. Plafkin & W. H. van der Schalie, 1977. Effects of intermittent chlorination on aquatic organisms and communities. Journal of Water Pollution Control 49: 35–44.

    CAS  Google Scholar 

  • Dionex Corporation, 2001. Dionex DX-80 Ion Analyzer Operator’s Manual. USA.

  • Dionisio-Sese, M. L. & S. Miyachi, 1992. The effect of sodium chloride on carbonic anhydrase activity in marine microalgae. Journal of Phycology 28: 619–624.

    Article  CAS  Google Scholar 

  • Fritz, S. C., S. Juggins, R. W. Battarbee & D. R. Engstrom, 1991. Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352: 706–708.

    Article  Google Scholar 

  • Fritz, S. C., S. Juggins & R. W. Battarbee, 1993. Diatom assemblages and ionic characterization of lakes of the Northern Great Plains, North America: a tool for reconstructing past salinity and climate fluctuations. Canadian Journa of Fisheries and Aquatic Sciences 50: 1844–1856.

    Article  CAS  Google Scholar 

  • Fukushima, S. & S. Kanada, 1999. Effects of chlorine on periphytic algae and macroinvertebrates in a stream receiving treated sewage as maintenance water. Japanese Journal of Limnology 60: 569–583.

    Google Scholar 

  • Fukushima, S., Y. Koichi & H. Fukushima, 1994. Effects of self-purification on periphytic algal communities. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 25: 1966–1970.

    CAS  Google Scholar 

  • Gasse, F., S. Juggins & L. B. Khelifa, 1995. Diatom-based transfer functions for inferring past hydrochemical characteristics of African lakes. Palaeogeography and Palaeoecology 117: 31–54.

    Article  Google Scholar 

  • Gómez, N. & M. Licursi, 2001. The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquatic Ecology 35: 173–181.

    Article  Google Scholar 

  • Hammer, O., D. A. T. Harper & P. D. Ryan, 2009. PAST – PAlaeontological STatistics, version 1.90. http://folk.uio.no/ohammer/past.

  • Herbst, D. B. & D. W. Blinn, 1998. Experimental mesocosm studies of salinity effects on the benthic algal community of a saline lake. Journal of Phycology 34: 772–778.

    Google Scholar 

  • Jüttner, I., H. Rothfritz & S. J. Ormerod, 1996. Diatoms as indicators of river quality in the Nepalese Middle Hills with consideration of the effects of habitat-specific sampling. Freshwater Biology 36: 475–486.

    Article  Google Scholar 

  • Kelly, M. G. & B. A. Whitton, 1995. The trophic diatom index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7: 433–444.

    Article  Google Scholar 

  • Kilham, P., S. S. Kilham & R. E. Hecky, 1986. Hypothesized resources relationships among African plankton diatoms. Limnology and Oceanography 31: 1169–1181.

    Article  Google Scholar 

  • Kobayasi, H. & S. Mayama, 1989. Most pollution-tolerant diatoms of severely polluted rivers in the vicinity of Tokyo. Japanese Journal of Phycology 30: 188–196.

    Google Scholar 

  • Lange-Bertalot, H., 1979. Pollution tolerance of diatoms as criteria for water quality estimation. Nova Hedwigia 64: 283–304.

    Google Scholar 

  • Lavoie, I., S. Campeau, F. Darchambeau, G. Cabana & P. J. Dillon, 2008. Are diatoms good integrators of temporary variability in stream water quality? Freshwater Biology 53: 827–841.

    Article  CAS  Google Scholar 

  • Leland, H. V., 1995. Distribution of phytobenthos in the Yakima River basin, Washington, in relation to geology, land use, and other environmental factors. Canadian Journal of Fisheries and Aquatic Sciences 52: 1108–1129.

    Article  Google Scholar 

  • Lobo, E. A., V. L. Callegaro & P. Bender, 2002. Utilização de algas diatomáceas epilíticas como indicadoras da qualidade da água em rios e arroios da Região Hidrográfica do Guaíba, RS, EDUNISC. Santa Cruz do Sul, Brasil.

    Google Scholar 

  • Lobo, E. A., V. L. M. Callegaro, G. Hermany, D. Bes, C. A. Wetzel & M. A. Oliveria, 2004. Use of epilithic diatoms as bioindicators from lotic systems in southern Brazil, with special emphasis on eutrophication. Acta Limnologica Brasiliensia 16: 25–40.

    Google Scholar 

  • Metzeltin, D., H. Lange-Bertalot & F. García-Rodríguez, 2005. Diatoms of Uruguay. Iconographia Diatomologica 15: 1–736.

    Google Scholar 

  • Metzeltin, D. & H. Lange-Bertalot, 2007. Tropical diatoms of South America II. Iconographia Diatomologica 18: 1–877.

    Google Scholar 

  • Napolitano, G. E., W. R. Hill, J. B. Guckert, A. J. Stewart, S. C. Nold & D. C. White, 1994. Changes in periphyton fatty acid composition in chlorine polluted streams. Journal of North American Benthological Scociety 13: 237–249.

    Article  Google Scholar 

  • Oliveira, M. A., L. C. Torgan, E. A. Lobo & A. Scharzbold, 2001. Association of periphytic diatom species of artificial substrate in lotic environments in the Arroio Sampaio basin, RS, Brazil: relationships with abiotic variables. Brazilian Journal of Biolology 6: 523–540.

    Google Scholar 

  • Pan, Y., R. J. Stevenson, B. H. Hill, A. T. Herlihy & G. B. Collins, 1996. Using diatoms as indicators of ecological conditions in lotic systems: a regional assessment. Journal of North American Bethological Society 15: 481–495.

    Article  Google Scholar 

  • Patrick, R. & C. W. Reimer, 1966. The Diatoms of the United States. Academy of Natural Sciences, Philadelphia: 688.

    Google Scholar 

  • Pearsall, W. H., 1932. Phytoplankton in the English Lakes II. Composition of the phytoplankton in relation to dissolved substances. Journal of Ecology 2: 241–262.

    Google Scholar 

  • Ponader, K. C., D. F. Charles & T. J. Belton, 2007. Diatom-based TP and TN inference models and indices for monitoring nutrient enrichment of New Jersey streams. Ecological Indicators 7: 79–93.

    Article  Google Scholar 

  • Potapova, M. G. & D. F. Charles, 2002. Benthic diatoms in USA Rivers: distributions along speciation and environmental gradients. Journal of Biogeography 29: 167–187.

    Article  Google Scholar 

  • Potapova, M. & D. F. Charles, 2003. Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition. Freshwater Biology 48: 1311–1328.

    Article  CAS  Google Scholar 

  • Rörig, L. R., J. G. Tundisi, C. A. F. Schettini, J. Pereira-Filho, J. T. Menezes, T. C. M. Almeida, S. R. Urban, C. M. Radetski, R. C. Sperb, C. A. Stramosk, R. S. Macedo, M. A. Castro-Silva & J. A. A. Perez, 2007. From a water resource to a point pollution source: the daily journey of a coastal urban stream. Brazilian Journal of Biology 67: 597–609.

    Google Scholar 

  • Rothfritz, H., I. Juttner, A. M. Suren & S. J. Ormerod, 1997. Epiphytic and epilithic diatom communities along environmental gradients in the Nepalese Himalaya: implications for the assessment of biodiversity and water quality. Archive für Hydrobiologia 138: 465–482.

    Google Scholar 

  • Rott, E., H. C. Duthie & E. Pipp, 1998. Monitoring organic pollution and eutrophication in the Grand River, Ontario, by means of diatoms. Canadiam Journal of Fisheries and Aquatic Sciences 55: 1443–1453.

    Article  CAS  Google Scholar 

  • Round, F. E., 1991. Diatoms in river water-monitoring studies. Journal of Applied Phycology 3: 129–145.

    Article  Google Scholar 

  • Salomoni, S. E., O. Rocha, V. L. Callegaro & E. A. Lobo, 2006. Epilithic diatoms as indicators of water quality in the Gravataí river, Rio Grande do Sul, Brazil. Hydrobiologia 559: 233–246.

    CAS  Google Scholar 

  • Saros, J. E. & S. C. Fritz, 2000. Nutrients as a link between ionic concentrations composition and diatom distributions in saline lakes. Journal of Paleolimnology 23: 449–453.

    Article  Google Scholar 

  • Sládecék, V., 1986. Diatoms as indicators of organic pollution. Acta Hydrochimica et Hydrobiologica 1986(14): 555–566.

    Google Scholar 

  • Stevenson, R. J., 2006. Refining diatom indicators for valued ecological attributes & development of water quality criteria. In Ognjanova-Rumenova, N. & K. Manoylov (eds.), Advances in Phycological Studies. Pensoft Publishers, Moscow, Russia: 365–383.

    Google Scholar 

  • Ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Advances in Ecological Research 18: 271–317.

    Article  Google Scholar 

  • Ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO Reference Manual and CanDraw for Windows User’s Guide: software for community ordination, version 4.5. Microcomputer Power, Ithaca, New York.

    Google Scholar 

  • Ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 37: 130–137.

    Google Scholar 

  • Van Dam, H., A. Mertens & J. Sinkeldam, 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Aquatic Ecology 28: 117–133.

    Article  Google Scholar 

  • Videau, C., M. Khalanski & M. Penot, 1980. Physiological response to chlorination marine alga Dunaliella primolecta Butcher. Journal of Experimental and Marine Biology 47: 113–126.

    Article  CAS  Google Scholar 

  • Winter, J. G. & H. C. Duthei, 2000. Epilithic diatoms as indicators of stream total N and total P concentrations. Journal of North American Benthological Society 19: 32–49.

    Google Scholar 

Download references

Acknowledgments

This study was made possible by the provision of funds from Third World Academy of Science through Conselho Nacional de Desenvolvimento Científico e Tecnológico. I also wish to thank the Insttituto Internacional de Ecologia management and staff for their support during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taurai Bere.

Additional information

Handling editor: N.R. Bond

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bere, T., Tundisi, J.G. Influence of ionic strength and conductivity on benthic diatom communities in a tropical river (Monjolinho), São Carlos-SP, Brazil. Hydrobiologia 661, 261–276 (2011). https://doi.org/10.1007/s10750-010-0532-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0532-0

Keywords

Navigation