Skip to main content

Advertisement

Log in

Composition, size, and biomass of zooplankton in large productive Florida lakes

  • TRIBUTE TO STANLEY DODSON
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Crustacean zooplankton data were compiled from long-term observational studies at seven large shallow Florida lakes, to determine whether there are general characteristics in regard to species composition, body size, and biomass. In particular, we examined whether patterns in body size and species richness fit empirical models developed by Stanley Dodson. The lakes included range in size from 125 to 1730 km2 and encompass mesotrophic to hyper-eutrophic conditions. We found that zooplankton biomass was strongly dominated by one species of calanoid copepod—Arctodiaptomus dorsalis. Large daphnids were absent, and Cladocera assemblages were dominated by small taxa such as Ceriodaphnia, Chydorus, and Eubosmina. The total number of species of pelagic cladocerans (8–12) was consistent with Dodson’s predictions based on lake area. The average size of crustacean zooplankton in Florida lakes is small in comparison with temperate communities. A. dorsalis is the smallest calanoid copepod in North America, and the mean length of Cladocera (0.6 mm) is consistent with Dodson’s results that size decreases from temperate to tropical zones. Total biomass of crustacean zooplankton was very low, ratios of zooplankton to phytoplankton biomass (0.01–0.1) are among the lowest reported in the literature, and the zooplankton displayed short-lasting early spring peaks in biomass. Cladocera were almost entirely absent in spring and summer. Factors known to occur in Florida lakes, which appear to explain these characteristics of biomass, include intense fish predation and high summer water temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Auer, B., U. Elzer & H. Arndt, 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. Journal of Plankton Research 26: 697–709.

    Article  Google Scholar 

  • Bays, J. S., 1981. Zooplankton-trophic state relationships and seasonality in Florida lakes. MS thesis, University of Florida, Gainesville, FL: 155 pp.

  • Bays, J. S. & T. L. Crisman, 1983. Zooplankton and trophic state relationships in Florida lakes. Canadian Journal of Fisheries and Aquatic Sciences 40: 1813–1819.

    Article  Google Scholar 

  • Beaver, J. R. & K. E. Havens, 1996. Seasonal and spatial variation in zooplankton community structure and their relation to possible controlling variables in Lake Okeechobee. Freshwater Biology 36: 45–56.

    Article  Google Scholar 

  • Beaver, J. R., T. L. Crisman & J. S. Bays, 1981. Thermal regimes of Florida lakes. Hydrobiologia 83: 267–273.

    Article  Google Scholar 

  • Bienert, R. W. Jr., 1982. The plankton communities of selected colored lakes in north-central Florida. MS thesis, University of Florida, Gainesville, FL: 125 pp.

  • Blancher, E. C., 1984. Zooplankton-trophic state relationships in some north and central Florida lakes. Hydrobiologia 109: 251–263.

    Article  Google Scholar 

  • Brooks, J. L., 1957. The Systematics of North American Daphnia. Yale University Press, New Haven, CT.

    Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Article  PubMed  CAS  Google Scholar 

  • Bull, L. A., D. D. Fox, L. J. Davis, K. Miller & J. G. Wullschleger, 1995. Fish distribution in the limnetic zone of Lake Okeechobee, Florida. Archiv für Hydrobiologie, Advances in Limnology 45: 333–342.

    Google Scholar 

  • Canfield, D. E. Jr. & C. W. Watkins II, 1984. Relationships between zooplankton abundance and chlorophyll a concentrations in Florida lakes. Journal of Freshwater Ecology 2: 335–344.

    Article  CAS  Google Scholar 

  • Crisman, T. L. & J. R. Beaver, 1990. Applicability of planktonic biomanipulation for managing eutrophication in the subtropics. Hydrobiologia 200: 177–185.

    Article  Google Scholar 

  • Crisman, T. L., E. J. Phlips & J. R. Beaver, 1995. Zooplankton seasonality and trophic state relationships in Lake Okeechobee, Florida. Archiv für Hydrobiologie, Advances in Limnology 45: 213–232.

    Google Scholar 

  • Dockendorf, K. J. & M. S. Allen, 2005. Age-0 black crappie abundance and size in relation to zooplankton density, stock abundance, and water clarity in three Florida lakes. Transactions of the American Fisheries Society 134: 172–183.

    Article  Google Scholar 

  • Dodson, S. I., 1974. Zooplankton competition and predation: an experimental test of the size-efficiency hypothesis. Ecology 55: 605–613.

    Article  Google Scholar 

  • Dodson, S. I., 1979. Body size patterns in arctic and temperate zooplankton. Limnology and Oceanography 24: 940–949.

    Article  Google Scholar 

  • Dodson, S. I., 1992. Predicting crustacean zooplankton species richness. Limnology and Oceanography 37: 848–856.

    Article  Google Scholar 

  • Duarte, C. M., S. Agusti & D. E. Canfield Jr., 1992. Patterns in phytoplankton community structure in Florida lakes. Limnology and Oceanography 37: 155–161.

    Article  Google Scholar 

  • Dumont, H. J., 1994. On the diversity of Cladocera in the tropics. Hydrobiologia 272: 27–38.

    Article  Google Scholar 

  • Elmore, J. L., B. C. Cowell & D. S. Vodopich, 1984. Biological communities of three subtropical Florida lakes of different trophic character. Archiv für Hydrobiologie 100: 455–478.

    Google Scholar 

  • Gillooly, J. F. & S. I. Dodson, 2000. Latitudinal patterns in the size distribution and seasonal dynamics of new world freshwater cladocerans. Limnology and Oceanography 45: 22–30.

    Article  Google Scholar 

  • Gyllström, M. L., L. A. Hansson, E. Jeppesen, G. García-Criado, E. Gross, K. Irvine, T. Kairesalo, R. Kornijow, M. R. Miracle, M. Nykänen, T. Nõges, S. Romo, D. Stephen, E. Van Donk & B. Moss, 2005. The role of climate in shaping zooplankton communities of shallow lakes. Limnology and Oceanography 50: 2008–2021.

    Article  Google Scholar 

  • Havel, J. E. & P. D. N. Hebert, 1993. Daphnia lumholtzii in North America: another exitic zooplankter. Limnology and Oceanography 38: 1823–1827.

    Article  Google Scholar 

  • Havens, K. E., T. L. East & J. R. Beaver, 1996. Experimental studies of zooplankton-phytoplankton-nutrient interactions in a large subtropical lake (Lake Okeechobee, Florida, USA). Freshwater Biology 36: 579–597.

    Article  Google Scholar 

  • Havens, K. E., T. L. East, J. Marcus, P. Essex, B. Bolan, S. Raymond & J. R. Beaver, 2000. Dynamics of the exotic Daphnia lumholtzii and native macro-zooplankton in a subtropical chain-of-lakes in Florida, USA. Freshwater Biology 45: 21–32.

    Article  Google Scholar 

  • Havens, K. E., J. R. Beaver & T. L. East, 2007. Plankton biomass partitioning in a eutrophic subtropical lake: comparison with results from temperate lake ecosystems. Journal of Plankton Research 18: 1605–1625.

    Google Scholar 

  • Havens, K. E., A. C. Elia, M. I. Taticchi & R. S. Fulton III, 2009. Zooplankton-phytoplankton relationships in shallow subtropical versus temperate lakes Apopka (Florida, USA) and Trasimeno (Umbria, Italy). Hydrobiologia 628: 165–175.

    Article  CAS  Google Scholar 

  • Hrbáček, J., 1958. Density of the fish population as a factor influencing the distribution and speciation of the species in the genus Daphnia. Proceedings of the International Conference on Zoology 10: 794–796.

    Google Scholar 

  • James, R. T., M. J. Chimney, B. Sharfstein, D. R. Engstrom, S. R. Schottler, T. East & K. R. Jin, 2008. Hurricane effects on a shallow lake ecosystem, Lake Okeechobee, Florida (USA). Fundamental and Applied Limnology 172: 273–287.

    Article  Google Scholar 

  • Jeppesen, E. J., M. Søndergaard, J. P. Jensen, K. E. Havens, et al., 2005. Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.

    Article  CAS  Google Scholar 

  • Jeppesen, E. J., M. Meerhoff, B. A. Jacobsen, R. S. Hansen, M. Søndergaard, J. P. Jensen, T. L. Lauridsen, N. Mazzeo & C. W. C. Branco, 2007. Restoration of shallow lakes by nutrient control and biomanipulation—the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.

    Article  CAS  Google Scholar 

  • Lonsdale, D. J. & J. S. Levinton, 1985. Latitudinal differentiation in copepod growth: an adaptation to temperature. Ecology 66: 1397–1407.

    Article  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. LeCren, 1958. The inverted microscope method for estimating algal numbers and the statistical basis for estimations by counting. Hydrobiologia 11: 393–424.

    Article  Google Scholar 

  • Mallin, M. A. & W. E. Partin, 1989. Thermal tolerances of common Cladocera. Journal of Freshwater Ecology 5: 45–51.

    Article  Google Scholar 

  • McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. A. & F. H. Rigler (eds), A Manual for the Assessment of Secondary Productivity in Fresh Waters. Blackwell Scientific, Oxford: 228–265.

    Google Scholar 

  • Meerhoff, M., J. M. Clemente, F. Teixeira, F. de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007. Can warm climate-related structure of littoral predator assemblages weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.

    Article  Google Scholar 

  • Moore, M. V., C. F. Folt & R. S. Stemberger, 1996. Consequences of elevated temperatures for zooplankton assemblages in temperate lakes. Archiv für Hydrobiologie 135: 289–319.

    Google Scholar 

  • Nordlie, F. G., 1976. Plankton communities of three central Florida lakes. Hydrobiologia 48: 65–78.

    Article  CAS  Google Scholar 

  • Pace, M. L., 1986. An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnology and Oceanography 31: 45–55.

    Article  Google Scholar 

  • Paerl, H. W. & R. S. Fulton III, 2006. Ecology of harmful cyanobacteria. In Graneli, E. & J. T. Turner (eds), Ecology of Harmful Algae. Springer-Verlag, Berlin: 95–109.

    Chapter  Google Scholar 

  • Phlips, E. J., F. J. Aldridge, P. Hansen, P. V. Zimba, J. Ihnat, M. Conroy & P. Ritter, 1993. Spatial and temporal variability of trophic state parameters in a shallow subtropical lake (Lake Okeechobee, Florida, USA). Archiv für Hydrobiologie 128: 437–458.

    Google Scholar 

  • Rogers, M. W. & M. S. Allen, 2008. Hurricane impacts to Lake Okeechobee: altered hydrology creates difficult management tradeoffs. Fisheries 33: 11–17.

    Article  Google Scholar 

  • Søndergaard, M., L. Liboriusssen, A. R. Pedersen & E. Jeppesen, 2008. Lake restoration by fish removal: short and long-term effects in 36 Danish lakes. Ecosystems 11: 1291–1305.

    Article  Google Scholar 

  • Stephen, D., D. M. Balayla, E. Bécares, S. E. Collings, C. Fernández-Aláez, M. Fernández-Aláez, C. Ferriol, P. García, J. Gomá, M. Gyllström, L.-A. Hansson, J. Hietala, T. Kairesalo, M. R. Miracle, S. Romo, J. Rueda, S. Stahl-Delbanco, M. Svensson, K. Vakkilainen, M. Valentín, W. J. Van De Bund, E. Van Donk, E. Vincente, M. J. Villena & B. Moss, 2004. Continental-scale patterns of nutrient and fish effects on shallow lakes: introduction to a pan-European mesocosm experiment. Freshwater Biology 49: 1517–1524.

    Article  CAS  Google Scholar 

  • Thorp, J. H. & A. P. Covich (eds), 1991. Ecology and Classification of North American Freshwater Invertebrates. Academic Press, New York: 911 pp.

  • Tugend, K. I. & M. S. Allen, 2000. Temporal dynamics of zooplankton community composition and mean size at Lake Wauberg, Florida. Florida Scientist 63: 142–154.

    Google Scholar 

  • USEPA, 1979. Methods for Chemical Analysis of Water and Waste Water. United States Environmental Protection Agency: 490 pp.

  • Work, K. A. & M. Gophen, 1999. Factors that affect the abundance of an invasive cladoceran, Daphnia lumholtzii, in US reservoirs. Freshwater Biology 41: 1–10.

    Article  Google Scholar 

  • Work, K. A. & K. E. Havens, 2003. Zooplankton grazing on bacteria and cyanobacteria in a eutrophic lake. Journal of Plankton Research 25: 1301–1307.

    Article  Google Scholar 

  • Work, K. A., K. E. Havens, B. Sharfstein & T. L. East, 2005. How important is bacterial carbon to planktonic grazers in a turbid subtropical lake? Journal of Plankton Research 27: 357–372.

    Article  CAS  Google Scholar 

  • Young, S. N., 1979. Relationship between abuandance of crustacean zooplankton and trophic state in fourteen central Florida lakes. MA thesis, University of South Florida, Tampa, FL: 105 pp.

Download references

Acknowledgments

The authors are grateful to the field and laboratory staff of the St. Johns River and South Florida Water Management Districts for collecting and processing water chemistry samples, and for collecting macro-zooplankton. We also thank two anonymous reviewers for their constructive comments on a draft manuscript of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl E. Havens.

Additional information

Guest editors: H.J. Dumont, J.E. Havel, R. Gulati & P. Spaak / A Passion for Plankton: a tribute to the life of Stanley Dodson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havens, K.E., Beaver, J.R. Composition, size, and biomass of zooplankton in large productive Florida lakes. Hydrobiologia 668, 49–60 (2011). https://doi.org/10.1007/s10750-010-0386-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0386-5

Keywords

Navigation