Skip to main content
Log in

Daphnia galeata in the deep hypolimnion: spatial differentiation of a “typical epilimnetic” species

  • Cladocera
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Daphnia galeata is traditionally regarded to be a non-migratory species, which lives in warm epilimnetic waters. Depth segregation or vertical migration is usually attributed to other Daphnia species such as D. hyalina or D. longispina. In a two-year study, we found that in a deep, dammed-valley reservoir (Římov Reservoir, Czechia) the majority of the population of D. galeata lives in the warm epilimnetic waters during the summer months, but some specimens of this species could be always found in the deep strata as well. This hypolimnetic subpopulation stays in the cold hypolimnetic water and does not migrate. The abundance of hypolimnetic D.galeata does not exceed one specimen per litre and usually shows seasonal variation (minimal densities in early spring, maximal in late summer). Using allozyme electrophoresis, we found that the subpopulation from the deep hypolimnion was clearly genetically differentiated from the population in the epilimnion. We found significant differences in both allele and multilocus genotype frequencies; the FST values at most sampling dates exceeded 0.05. However, the spatial segregation between the epilimnetic and hypolimnetic subpopulations is not permanent. The reservoir is dimictic and hence, at least twice per year, all vertically segregated parts of the population are mixed together. Our results suggest that the deep hypolimnetic subpopulation is repeatedly re-established in spring by deepwater “colonists”, at least some of which seem to be ecologically specialised for the hypolimnetic conditions, and dominate the hypolimnion by the end of the season. The genetic differentiation is likely the result of both the different depth preferences of various D. galeata clones and different selective pressures in the epilimnion and hypolimnion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bast, S., I. Girgis & A. Seitz, 1993. Comparative investigation on the vertical distribution of Daphnia galeata and Daphnia galeata × cucullata in the eutrophic Lake Meerfelder Maar. Archiv für Hydrobiologie, Beiheft Ergebnisse der Limnologie 39: 217–222.

    Google Scholar 

  • Brandl, Z., B. Desortová, J. Hrbáček, J. Komárková, V. Vyhnálek, J. Sed’a & M. Straškraba, 1989. Seasonal changes of zooplankton and phytoplankton and their mutual relation in some Czechoslovak reservoirs. Archiv für Hydrobiologie, Beiheft Ergebnisse der Limnologie 33: 597–604.

    Google Scholar 

  • Brewer, M. C., 1998. Mating behaviours of Daphnia pulicaria, a cyclic parthenogen: comparisons with copepods. Philosophical Transactions of the Royal Society of London Series B—Biological Sciences 353: 805–815.

    Article  Google Scholar 

  • Chao, A. & T.-J. Shen, 2003–2005. Program SPADE (Species Prediction And Diversity Estimation). Program and User’s Guide published at http://www.chao.stat.nthu.edu.tw.

  • Čech, M., 2006. Diel vertical migrations, distribution and ontogeny of bathypelagic layer of European perch, Perca fluviatilis L., fry in reservoirs. PhD. thesis, University of South Bohemia, Czechia, 75 pp.

  • Čech, M. & J. Kubečka, 2002. Sinusoidal cycling swimming pattern of reservoir fishes. Journal of Fish Biology 61: 456–471.

    Article  Google Scholar 

  • Dawidowicz, P. & C. J. Loose, 1992. Cost of swimming by Daphnia during diel vertical migration. Limnology and Oceanography 37: 665–669.

    Google Scholar 

  • DeMeester, L. & L. J. Weider, 1999. Depth selection behavior, fish kairomones, and the life histories of Daphnia hyalina × galeata hybrid clones. Limnology and Oceanography 44: 1248–1258.

    Google Scholar 

  • Dodson, S. I., R. Tollrian & W. Lampert, 1997. Daphnia swimming behavior during vertical migration. Journal of Plankton Research 19: 969–978.

    Article  Google Scholar 

  • Goudet, J., 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html.

  • Guisande, C., A. Duncan & W. Lampert, 1991. Trade-offs in Daphnia vertical migration strategies. Oecologia 87: 357–359.

    Article  Google Scholar 

  • Hebert, P. D. N. & M. J. Beaton, 1989. Methodologies for Allozyme Analysis Using Cellulose Acetate Electrophoresis. Helena Laboratories, Beaumont, Texas, pp. 31.

    Google Scholar 

  • Hejzlar, J. & M. Straškraba, 1989. On the horizontal distribution of limnological variables in Rimov and other stratified Czechoslovak reservoirs. Archiv für Hydrobiologie, Beiheft Ergebnisse der Limnologie 33: 41–55.

    Google Scholar 

  • Jankowski, T. & D. Straile, 2003. A comparison of egg-bank and long-term plankton dynamics of two Daphnia species, D. hyalina and D. galeata: Potentials and limits of reconstruction. Limnology and Oceanography 48: 1948–1955.

    Article  Google Scholar 

  • Jankowski, T. & D. Straile, 2004. Allochronic differentiation among Daphnia species, hybrids and backcrosses: the importance of sexual reproduction for population dynamics and genetic architecture. Journal of Evolutionary Biology 17: 312–321.

    Article  PubMed  CAS  Google Scholar 

  • Kessler, K., 2004. Distribution of Daphnia in a trade-off between food and temperature: individual habitat choice and time allocation. Freshwater Biology 49: 1220–1229.

    Article  Google Scholar 

  • Kessler, K. & W. Lampert, 2004. Depth distribution of Daphnia in response to a deep-water algal maximum: the effect of body size and temperature gradient. Freshwater Biology 49: 392–401.

    Article  Google Scholar 

  • King, C. E. & M. R. Miracle, 1995. Diel vertical migration by Daphnia longispina in a Spanish lake: Genetic sources of distributional variation. Limnology and Oceanography 40: 226–231.

    Google Scholar 

  • Lampert, W., 1989. The adaptive significance of diel vertical migration. Functional Ecology 3: 21–27.

    Article  Google Scholar 

  • Lampert, W., E. McCauley & B. F. J. Manly, 2003. Trade-offs in the vertical distribution of zooplankton: ideal free distribution with costs?. Proceedings of the Royal Society of London, Series B—Biological Sciences 270: 765–773.

    Article  Google Scholar 

  • Lass, S., M. Boersma & P. Spaak, 2000. How do migrating daphnids cope with fish predation risk in the epilimnion under anoxic conditions in the hypolimnion?. Journal of Plankton Research 22: 1411–1418.

    Article  Google Scholar 

  • Magurran, A. E., 2004. Measuring Biological Diversity. Blackwell Publishing, Malden, MA.

    Google Scholar 

  • Miller, M. P., 1997. Tools for population genetic analysis (TFPGA). Ver. 1.3: a Windows program for the analysis of allozyme and molecular population genetic data. Available at http://www.marksgeneticsoftware.net.

  • Müller, J. & A. Seitz, 1993. Habitat partitioning and differential vertical migration of some Daphnia genotypes in a lake. Archiv für Hydrobiologie, Beiheft Ergebnisse Limnologie 39: 167–174.

    Google Scholar 

  • Rohlf, F. J. & D. E. Slice, 1996. BIOMstat. Statistical Software for Biologists, Version 3.1. Exeter Software, Setauket, New York, USA.

    Google Scholar 

  • Sed’a, J. & J. Kubečka, 1997. Long-term biomanipulation of Rimov Reservoir (Czech Republic). Hydrobiologia 345: 95–108.

    Article  Google Scholar 

  • Sed’a, J., A. Petrusek, J. Machacek & P. Smilauer, 2007. Spatial distribution of the Daphnia longispina species complex and other planktonic crustaceans in the heterogeneous environment of canyon-shaped reservoirs. Journal of Plankton Research 29: 619–628.

    Article  Google Scholar 

  • Spaak, P. & M. Boersma, 2001. The influence of fish kairomones on the induction and vertical distribution of sexual individuals of the Daphnia galeata species complex. Hydrobiologia 442: 185–193.

    Article  Google Scholar 

  • Stich, H. B. & W. Lampert, 1981. Predator evasion as an explanation of diurnal vertical migration by zooplankton. Nature 293: 396–398.

    Article  Google Scholar 

  • Stich, H. B. & W. Lampert, 1984. Growth and reproduction of migrating and non migrating Daphnia species under simulated food and temperature conditions of diurnal vertical migration. Oecologia 61: 192–196.

    Article  Google Scholar 

  • Tessier, A. & M. A. Leibold, 1997. Habitat use and ecological specialization within lake Daphnia populations. Oecologia 109: 561–570.

    Article  Google Scholar 

  • Weider, L. J. & H. B. Stich, 1992. Spatial and temporal heterogeneity of Daphnia in Lake Constance; intra- and interspecific comparisons. Limnology and Oceanography 37: 1327–1334.

    Article  Google Scholar 

  • Weider, L. J., W. Lampert, M. Wessels, J. K. Colbourne & P. Limburg, 1997. Long-term genetic shifts in a microcrustacean egg bank associated with anthropogenic changes in the Lake Constance ecosystem. Proceedings of the Royal Society of London, Series B—Biological Sciences 264: 1613–1618.

    Article  Google Scholar 

  • Winder, M., P. Spaak & W. M. Mooij, 2004. Trade-offs in Daphnia habitat selection. Ecology 85: 2027–2036.

    Article  Google Scholar 

  • Wolf, H. G. & M. A. Mort, 1986. Interspecific hybridization underlies phenotypic variability in Daphnia populations. Oecologia 68: 507–511.

    Article  Google Scholar 

  • Zaret, T. M. & J. S. Suffern, 1976. Vertical migration in zooplankton as a predator avoidance mechanism. Limnology and Oceanography 21: 804–813.

    Google Scholar 

Download references

Acknowledgements

We thank Ivana Vaníčková for counting of the night zooplankton samples from 2003 and Mary Burgis and David Hardekopf for language corrections. We are also grateful to Piet Spaak and two anonymous reviewers for critical reading and stimulating comments, which helped to improve the previous version of the manuscript. This study was supported by the Czech Science Foundation (projects 206/03/1537 and 206/04/0190), the Grant Agency of the Academy of Sciences of the Czech Republic (A6017301 and AVOZ 60170517), and the Czech Ministry of Education (MSM0021620828).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaromir Seda.

Additional information

Guest editor: Piet Spaak

Cladocera: Proceedings of the 7th International Symposium on Cladocera

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seda, J., Kolarova, K., Petrusek, A. et al. Daphnia galeata in the deep hypolimnion: spatial differentiation of a “typical epilimnetic” species. Hydrobiologia 594, 47–57 (2007). https://doi.org/10.1007/s10750-007-9075-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-9075-4

Keywords

Navigation