Skip to main content

Advertisement

Log in

Local and regional factors determining aquatic and semi-aquatic bug (Heteroptera) assemblages in rivers and streams of Greece

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Heteroptera species were collected from 48 sites distributed throughout the mainland and island complexes of Greece during 1999–2004. The aims of this study were to investigate Heteroptera distribution and abundance in Greek streams, identify the environmental factors that are linked to variation in their assemblages and to partition the influence of environmental and spatial components, alone and in combination, on Heteroptera community composition. Canonical ordination techniques (CCA) were used to determine the relationship between environmental variables and species abundance, while variation partitioning was performed using partial CCA to understand the importance of different explanatory variables in Heteroptera variation. Heteroptera variation was decomposed into independent and joint effects of local (physicochemical variables, microhabitat composition, stream width and depth), regional (land use/cover) and geographic variables (longitude, latitude, altitude and distance to source). Land use/cover, aquatic and riparian vegetation, stream size and water chemistry were the most important factors structuring Heteroptera assemblages. At regional scale, bug assemblages were mainly divided into those found in forested and agricultural landscapes, following water quality and microhabitat composition at local scale. Local variables accounted for 48% of the total explained variation, regional variables for 20% whereas geographical position appeared to be the least influencing factor (8.5%). The results of partial constraint analyses suggested that local variables play a major role in Heteroptera variation followed by regional variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlroth P., Alatalo R. V., Holopainen A., Kumpulainen T. and Suhonen J. (2003). Founder population size and number of source populations enhance colonization success in water striders. Oecologia 137: 617–620

    Article  PubMed  Google Scholar 

  • Allan J. D., Erickson D. L. and Fay J. (1997). The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biology 37: 149–161

    Article  Google Scholar 

  • Allan J. D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Reviews of Ecology and Systematics 35: 257–284

    Article  Google Scholar 

  • AQEM Consortium, 2002. Manual for the application of the AQEM method. A comprehensive method to assess European streams using macroinvertebrates, developed for the purpose of Water Framework Directive. Version 1.0, February 2002

  • Armitage P. D., Moss D., Wright J. F. and Furse M. T. (1983). The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running water sites. Water Research 17: 333–347

    Article  CAS  Google Scholar 

  • Biesiadka E. and Tabaka K. (1990). Investigations on water bugs (Heteroptera) of Szczytno Lakes. Fragmenta Faunistica 33: 45–69

    Google Scholar 

  • Biro J. (2003). Temporal-spatial pattern of true bug assemblages (Heteroptera: Gerromorpha, Nepomorpha) in Lake Balaton. Applied Ecology and Environmental Research 1: 173–181

    Google Scholar 

  • Borcard D., Legendre P. and Drapeau P. (1992). Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055

    Article  Google Scholar 

  • Brown E. S. (1948). A contribution towards an ecological survey of the aquatic and semi-aquatic Hemiptera–Heteroptera (water bugs) of the British Isles; dealing chiefly with the Scottish Highlands and East and South England. Transactions of the Society for British Entomology 9: 151–195

    Google Scholar 

  • Drosopoulos S. (1980). Hemipterological studies in Greece. Part 1 – Heteroptera. A catalogue of the reported species. Biologia Gallo-Hellenica 9: 163–185

    Google Scholar 

  • Eyre M. D. and Foster G. N. (1989). A comparison of aquatic Heteroptera and Coleoptera communities as a basis for environmental and conservation assessments in static water sites. Journal of Applied Entomology 108: 355–362

    Article  Google Scholar 

  • Garcia-Aviles J., Puig M. A. and Soler A. G. (1996). Distribution and association of the aquatic Heteroptera of the Balearic Islands (Spain). Hydrobiologia 324: 209–217

    Google Scholar 

  • Hill M. O. (1979). DECORANA – A FORTRAN Program for Detrended Correspondence Analysis and Reciprocol Averaging. Ecology and Systematics, Cornell University, New York

    Google Scholar 

  • Hufnagel L., Bakonyi G. and Vásárhelyi T. (1999). New approach for habitat characterization based on species lists of aquatic and semi-aquatic bugs. Environmental Monitoring and Assessment 58: 305–316

    Article  Google Scholar 

  • Hutchinson, G. E., 1993. A Treatise on Limnology: Vol. 4. The Zoobenthos. John Wiley & Sons, Inc., New York

  • Illies J. (1978). Limnofauna Europaea. A Checklist of the Animals Inhabiting European Inland Waters, with Accounts of their Distribution and Ecology. Gustav Fisher Verlag, Stuttgart

    Google Scholar 

  • Jansson A. (1977). Distribution of Micronectae (Heteroptera, Corixidae) in Lake Päijänne, central Finland: correlation with eutrophication and pollution. Annales Zoologici Fennici 14: 118–124

    Google Scholar 

  • Jansson A. (1987). Micronectinae (Heteroptera, Corixidae) as indicators of water quality in Lakes Vesijarvi, southern Finland, during the period 1976–1986. Biological Research Reports of the University of Jyväskylä 10: 119–128

    Google Scholar 

  • Josifov M. (1959). Hemiptera–Heteroptera from the Island of Thasos. Bulgarian Academy of Science. Biology 8: 265–269

    Google Scholar 

  • Kurzatkowska A. (1993). Investigations on the developmental biology of Notonecta reuteri Hung. and Notonecta glauca L. (Heteroptera). Acta Hydrobiologia 35: 41–48

    Google Scholar 

  • Macan T. T. (1938). Evolution of aquatic habitats with special reference to the distribution of Corixidae. Journal of Animal Ecology 7: 1–19

    Article  Google Scholar 

  • Macan, T. T., 1939. A key to the British species of Corixidae (Hemiptera – Heteroptera) with notes on their distribution. Scientific Publications of the Freshwater Biological Association No 1

  • Macan T. T. (1954). A contribution to the study of the ecology of Corixidae (Hemiptera). Journal of Animal Ecology 23: 115–141

    Article  Google Scholar 

  • Magnien P. (2000). Observations and interesting capture of Heteroptera. New species for France and Greece (Heteroptera: Corixidae, Nabidae, Tingidae, Lygaeidae, Miridae, Cydnidae). Nouvelle Revue D’Entomologie 6: 284–287

    Google Scholar 

  • McCafferty W. (1981). Aquatic Entomology. Science Books International, Inc, Boston

    Google Scholar 

  • Moreno J. L., Millán A., Suárez M. L., Vidal-Abarca M. R. and Velasco J. (1997). Aquatic Coleoptera and Heteroptera assemblages in waterbodies from ephemeral coastal streams (“ramblas”) of south-eastern Spain. Archives fur Hydrobiologie 141: 93–107

    Google Scholar 

  • Papacek M. (2001). Small aquatic and ripicolous bugs (Heteroptera: Nepomorpha) as predators and prey: the question of economic importance. European Journal of Entomology 98: 1–12

    Google Scholar 

  • Petrakis P. V. and Roussis V. (2001). Bioindication value of Hellenic aquatic Heteroptera: an algorithmic approach. Proceedings of the 10th Pan-Hellenic Congress of Ichthyologists, Chania, Greece,, 301–304

    Google Scholar 

  • Popham E. J. (1949). A contribution towards an ecological survey of the aquatic and semi-aquatic Hemiptera–Heteroptera (water bugs) of the British Isles. The Ribble Valley (Lancashire South and Mid). Transactions of the Society for British Entomology 10: 1–44

    Google Scholar 

  • Popham E. J. (1950). Water bugs (Hemiptera–Heteroptera) of North Surrey. Journal of the Society for British Entomology 3: 158–173

    Google Scholar 

  • Popham E. J. (1964). The migration of aquatic bugs with special reference to Corixidae (Hemiptera, Heteroptera). Archives fur Hydrobiologie 50: 450–496

    Google Scholar 

  • Qinghong L. (1997). Variation partitioning by partial redundancy analysis (RDA). Environmetrics 8: 75–85

    Article  Google Scholar 

  • Sandin L. and Johnson R. K. (2004). Local, landscape and regional factors structuring benthic macroinvertebrate assemblages in Swedish streams. Landscape Ecology 19: 501–514

    Article  Google Scholar 

  • Savage A. A. (1982). Use of water boatmen (Corixidae) in the classification of lakes. Biological Conservation 23: 55–70

    Article  Google Scholar 

  • Savage, A. A., 1989. Adults of the British aquatic Hemiptera: key with ecological notes. FBA Scientific Publication 50

  • Savage A. A. (1990). The distribution of Corixidae in lakes and the ecological status of the North West Midland Meres. Field Studies 7: 516–530

    Google Scholar 

  • Savage A. A. (1994a). The distribution of Corixidae in relation to the water quality of British lakes: a monitoring model. Freshwater Forum 4: 32–61

    Google Scholar 

  • Savage A. A. (1994b). Corixidae and water quality. Freshwater Forum 4: 214–216

    Google Scholar 

  • Skoulikidis N., Amaxidis Y., Bertahas I., Laschou S. and Gritzalis K. (2006). Analysis of factors driving stream water composition and synthesis of management tools – a case study on small/medium Greek catchments. The Science of the Total Environment 362: 205–241

    Article  PubMed  CAS  Google Scholar 

  • Sládecek V. and Sládecková A. (1994). Corixidae as indicators of organic pollution. Freshwater Forum 4: 211–213

    Google Scholar 

  • Svensson B. G., Tallmark B. and Petersson E. (2000). Habitat heterogeneity, coexistence and habitat utilization in five backswimmer species (Notonecta spp.; Hemiptera, Notonectidae). Aquatic Insects 22: 81–98

    Article  Google Scholar 

  • Tamanini, L., 1979. Guide per il riconoscimento delle specie animali delle acque interne I-taliane. Eterotteri acquatici (Heteroptera: Gerromorpha, Nepomorpha). No 6. Consiglio Nazionale delle Ricerche

  • (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179

    Article  Google Scholar 

  • Prentice C. (1988). A theory of gradient analysis. Advances in Ecological Research 18: 271–317

    Article  Google Scholar 

  • Smilauer P. (2002). CANOCO, Software for Canonical Community Ordination (ver. 4.05). Centre for Biometry, Wageningen, The Netherlands

    Google Scholar 

  • Vannote R. L., Minshall G. W., Cummins K. W., Sedell J. R. and Cushing C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137

    Article  Google Scholar 

  • Wollmann K. (2000). Corixidae (Hemiptera, Heteroptera) in acidic mining lakes with pH 3 in Lusatia, Germany. Hydrobiologia 433: 181–183

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Karaouzas.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karaouzas, I., Gritzalis, K.C. Local and regional factors determining aquatic and semi-aquatic bug (Heteroptera) assemblages in rivers and streams of Greece . Hydrobiologia 573, 199–212 (2006). https://doi.org/10.1007/s10750-006-0274-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0274-1

Keywords

Navigation