Skip to main content
Log in

A miRNA’s insight into the regenerating heart: a concise descriptive analysis

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Manipulation of microRNA (miRNA) expression has been shown to induce cardiac regeneration, consolidating their therapeutic potential. However, studies often validate only a few miRNA targets in each experiment and hold these targets entirely accountable for the miRNAs’ action, ignoring the other potential molecular and cellular events involved. In this report, experimentally validated miRNAs are used as a window of discovery for the possible genes and signaling pathways that are implicated in cardiac regeneration. A thorough evidence search was conducted, and identified miRNAs were submitted for in silico dissection using reliable bioinformatics tools. A total of 46 miRNAs were retrieved from existing literature. Shared targets between miRNAs included well-recognized genes such as BCL-2, CCND1, and PTEN. Transcription factors that are possibly involved in the regeneration process such as SP1, CTCF, and ZNF263 were also identified. The analysis confirmed well-established signaling pathways involved in cardiac regeneration such as Hippo, MAPK, and AKT signaling, and revealed new pathways such as ECM-receptor interaction, and FoxO signaling on top of hormonal pathways such as thyroid, adrenergic, and estrogen signaling pathways. Additionally, a set of differentially expressed miRNAs were identified as potential future experimental candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the data are provided within the manuscript and its supplementary files.

References

  1. Anderson JL, Morrow DA (2017) Acute myocardial infarction. N Engl J Med 376(21):2053–2064. https://doi.org/10.1056/NEJMra1606915

    Article  CAS  PubMed  Google Scholar 

  2. Cahill TJ, Kharbanda RK (2017) Heart failure after myocardial infarction in the era of primary percutaneous coronary intervention: mechanisms, incidence and identification of patients at risk. World J Cardiol 9(5):407–415. https://doi.org/10.4330/wjc.v9.i5.407

    Article  PubMed  PubMed Central  Google Scholar 

  3. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 98(18):10344–10349. https://doi.org/10.1073/pnas.181177898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Menasche P (2018) Cell therapy trials for heart regeneration - lessons learned and future directions. Nat Rev Cardiol 15(11):659–671. https://doi.org/10.1038/s41569-018-0013-0

    Article  PubMed  Google Scholar 

  5. Li Y, He L, Huang X, Bhaloo SI, Zhao H, Zhang S, Pu W, Tian X, Li Y, Liu Q, Yu W, Zhang L, Liu X, Liu K, Tang J, Zhang H, Cai D, Ralf AH, Xu Q, Lui KO, Zhou B (2018) Genetic lineage tracing of nonmyocyte population by dual recombinases. Circulation 138(8):793–805. https://doi.org/10.1161/CIRCULATIONAHA.118.034250

    Article  CAS  PubMed  Google Scholar 

  6. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078–1080. https://doi.org/10.1126/science.1200708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. O'Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9:402. https://doi.org/10.3389/fendo.2018.00402

    Article  CAS  Google Scholar 

  8. Afify ARY (2019) The long non-coding road to endogenous cardiac regeneration. Heart Fail Rev 24(4):587–600. https://doi.org/10.1007/s10741-019-09782-5

    Article  PubMed  Google Scholar 

  9. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47(D1):D155–D162. https://doi.org/10.1093/nar/gky1141

    Article  CAS  PubMed  Google Scholar 

  10. Xiang R, Lei H, Chen M, Li Q, Sun H, Ai J, Chen T, Wang H, Fang Y, Zhou Q (2012) The miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation of mouse embryonic cardiomyocytes. Braz J Med Biol Res 45(2):131–138. https://doi.org/10.1590/s0100-879x2012007500007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S, Xia J (2016) miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res 44(W1):W135–W141. https://doi.org/10.1093/nar/gkw288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613. https://doi.org/10.1093/nar/gky1131

    Article  CAS  PubMed  Google Scholar 

  13. Killcoyne S, Carter GW, Smith J, Boyle J (2009) Cytoscape: a community-based framework for network modeling. Methods Mol Biol 563:219–239. https://doi.org/10.1007/978-1-60761-175-2_12

    Article  CAS  PubMed  Google Scholar 

  14. Georgakilas G, Vlachos IS, Zagganas K, Vergoulis T, Paraskevopoulou MD, Kanellos I, Tsanakas P, Dellis D, Fevgas A, Dalamagas T, Hatzigeorgiou AG (2016) DIANA-miRGen v3.0: accurate characterization of microRNA promoters and their regulators. Nucleic Acids Res 44(D1):D190–D195. https://doi.org/10.1093/nar/gkv1254

    Article  CAS  PubMed  Google Scholar 

  15. Han H, Cho JW, Lee S, Yun A, Kim H, Bae D, Yang S, Kim CY, Lee M, Kim E, Lee S, Kang B, Jeong D, Kim Y, Jeon HN, Jung H, Nam S, Chung M, Kim JH, Lee I (2018) TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res 46(D1):D380–D386. https://doi.org/10.1093/nar/gkx1013

    Article  CAS  PubMed  Google Scholar 

  16. Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T, Hatzigeorgiou AG (2015) DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 43(W1):W460–W466. https://doi.org/10.1093/nar/gkv403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vlachos IS, Vergoulis T, Paraskevopoulou MD, Lykokanellos F, Georgakilas G, Georgiou P, Chatzopoulos S, Karagkouni D, Christodoulou F, Dalamagas T, Hatzigeorgiou AG (2016) DIANA-mirExTra v2.0: Uncovering microRNAs and transcription factors with crucial roles in NGS expression data. Nucleic Acids Res 44(W1):W128–W134. https://doi.org/10.1093/nar/gkw455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492(7429):376–381. https://doi.org/10.1038/nature11739

    Article  CAS  PubMed  Google Scholar 

  19. Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, Mammen PP, Rothermel BA, Olson EN, Sadek HA (2013) Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci U S A 110(1):187–192. https://doi.org/10.1073/pnas.1208863110

    Article  PubMed  Google Scholar 

  20. Hullinger TG, Montgomery RL, Seto AG, Dickinson BA, Semus HM, Lynch JM, Dalby CM, Robinson K, Stack C, Latimer PA, Hare JM, Olson EN, van Rooij E (2012) Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 110(1):71–81. https://doi.org/10.1161/CIRCRESAHA.111.244442

    Article  CAS  PubMed  Google Scholar 

  21. Gao F, Kataoka M, Liu N, Liang T, Huang ZP, Gu F, Ding J, Liu J, Zhang F, Ma Q, Wang Y, Zhang M, Hu X, Kyselovic J, Hu X, Pu WT, Wang J, Chen J, Wang DZ (2019) Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction. Nat Commun 10(1):1802. https://doi.org/10.1038/s41467-019-09530-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen J, Huang ZP, Seok HY, Ding J, Kataoka M, Zhang Z, Hu X, Wang G, Lin Z, Wang S, Pu WT, Liao R, Wang DZ (2013) mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res 112(12):1557–1566. https://doi.org/10.1161/circresaha.112.300658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gu H, Liu Z, Zhou L (2017) Roles of miR-17-92 cluster in cardiovascular development and common diseases. Biomed Res Int 2017:9102909. https://doi.org/10.1155/2017/9102909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Adamowicz MMC, Haubner BJ, Noseda M, Collins MJ, Paiva MA et al (2018) Functionally conserved noncoding regulators of cardiomyocyte proliferation and regeneration in mouse and human. Circ Cardiovasc Genet. https://doi.org/10.1161/CIRCGEN.117.001805

  25. Mahmoud AI, Kocabas F, Muralidhar SA, Kimura W, Koura AS, Thet S, Porrello ER, Sadek HA (2013) Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 497(7448):249–253. https://doi.org/10.1038/nature12054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pandey R, Yang Y, Jackson L, Ahmed RP (2016) MicroRNAs regulating meis1 expression and inducing cardiomyocyte proliferation. Cardiovasc Regen Med 3

  27. Vujic A, Lerchenmuller C, Wu TD, Guillermier C, Rabolli CP, Gonzalez E, Senyo SE, Liu X, Guerquin-Kern JL, Steinhauser ML, Lee RT, Rosenzweig A (2018) Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nat Commun 9(1):1659. https://doi.org/10.1038/s41467-018-04083-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ding S, Huang H, Xu Y, Zhu H, Zhong C (2017) MiR-222 in cardiovascular diseases: physiology and pathology. Biomed Res Int 2017:4962426. https://doi.org/10.1155/2017/4962426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li N, Zhou H, Tang Q (2018) miR-133: a suppressor of cardiac remodeling? Front Pharmacol 9:903. https://doi.org/10.3389/fphar.2018.00903

  30. Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22(23):3242–3254. https://doi.org/10.1101/gad.1738708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yin VP, Lepilina A, Smith A, Poss KD (2012) Regulation of zebrafish heart regeneration by miR-133. Dev Biol 365(2):319–327. https://doi.org/10.1016/j.ydbio.2012.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xin M, Kim Y, Sutherland LB, Murakami M, Qi X, McAnally J, Porrello ER, Mahmoud AI, Tan W, Shelton JM, Richardson JA, Sadek HA, Bassel-Duby R, Olson EN (2013) Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci U S A 110(34):13839–13844. https://doi.org/10.1073/pnas.1313192110

    Article  PubMed  PubMed Central  Google Scholar 

  33. von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, Ma Q, Ishiwata T, Zhou B, Camargo FD, Pu WT (2012) YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci U S A 109(7):2394–2399. https://doi.org/10.1073/pnas.1116136109

    Article  Google Scholar 

  34. Hashmi S, Ahmad HR (2019) Molecular switch model for cardiomyocyte proliferation. Cell Regen (Lond) 8(1):12–20. https://doi.org/10.1016/j.cr.2018.11.002

    Article  Google Scholar 

  35. Mohamed TMA, Ang YS, Radzinsky E, Zhou P, Huang Y, Elfenbein A, Foley A, Magnitsky S, Srivastava D (2018) Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 173(1):104–116 e112. https://doi.org/10.1016/j.cell.2018.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gomez-Velazquez M, Badia-Careaga C, Lechuga-Vieco AV, Nieto-Arellano R, Tena JJ, Rollan I, Alvarez A, Torroja C, Caceres EF, Roy AR, Galjart N, Delgado-Olguin P, Sanchez-Cabo F, Enriquez JA, Gomez-Skarmeta JL, Manzanares M (2017) CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart. PLoS Genet 13(8):e1006985. https://doi.org/10.1371/journal.pgen.1006985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. O'Connor L, Gilmour J, Bonifer C (2016) The role of the ubiquitously expressed transcription factor Sp1 in tissue-specific transcriptional regulation and in disease. Yale J Biol Med 89(4):513–525

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sengupta A, Kalinichenko VV, Yutzey KE (2013) FoxO1 and FoxM1 transcription factors have antagonistic functions in neonatal cardiomyocyte cell-cycle withdrawal and IGF1 gene regulation. Circ Res 112(2):267–277. https://doi.org/10.1161/CIRCRESAHA.112.277442

    Article  CAS  PubMed  Google Scholar 

  39. Hirose K, Payumo AY, Cutie S, Hoang A, Zhang H, Guyot R, Lunn D, Bigley RB, Yu H, Wang J, Smith M, Gillett E, Muroy SE, Schmid T, Wilson E, Field KA, Reeder DM, Maden M, Yartsev MM, Wolfgang MJ, Grutzner F, Scanlan TS, Szweda LI, Buffenstein R, Hu G, Flamant F, Olgin JE, Huang GN (2019) Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 364(6436):184–188. https://doi.org/10.1126/science.aar2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Deng S, Zhao Q, Zhen L, Zhang C, Liu C, Wang G, Zhang L, Bao L, Lu Y, Meng L, Lu J, Yu P, Lin X, Zhang Y, Chen YH, Fan H, Cho WC, Liu Z, Yu Z (2017) Neonatal heart-enriched miR-708 promotes proliferation and stress resistance of cardiomyocytes in rodents. Theranostics 7(7):1953–1965. https://doi.org/10.7150/thno.16478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pandey R, Velasquez S, Durrani S, Jiang M, Neiman M, Crocker JS, Benoit JB, Rubinstein J, Paul A, Ahmed RP (2017) MicroRNA-1825 induces proliferation of adult cardiomyocytes and promotes cardiac regeneration post ischemic injury. Am J Transl Res 9(6):3120–3137

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xiao J, Liu H, Cretoiu D, Toader DO, Suciu N, Shi J, Shen S, Bei Y, Sluijter JP, Das S, Kong X, Li X (2017) miR-31a-5p promotes postnatal cardiomyocyte proliferation by targeting RhoBTB1. Exp Mol Med 49(10):e386. https://doi.org/10.1038/emm.2017.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liang D, Li J, Wu Y, Zhen L, Li C, Qi M, Wang L, Deng F, Huang J, Lv F, Liu Y, Ma X, Yu Z, Zhang Y, Chen YH (2015) miRNA-204 drives cardiomyocyte proliferation via targeting Jarid2. Int J Cardiol 201:38–48. https://doi.org/10.1016/j.ijcard.2015.06.163

    Article  PubMed  Google Scholar 

  44. Huang W, Feng Y, Liang J, Yu H, Wang C, Wang B, Wang M, Jiang L, Meng W, Cai W, Medvedovic M, Chen J, Paul C, Davidson WS, Sadayappan S, Stambrook PJ, Yu XY, Wang Y (2018) Loss of microRNA-128 promotes cardiomyocyte proliferation and heart regeneration. Nat Commun 9(1):700. https://doi.org/10.1038/s41467-018-03019-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Clark AL, Naya FJ (2015) MicroRNAs in the myocyte enhancer factor 2 (MEF2)-regulated Gtl2-Dio3 noncoding RNA locus promote cardiomyocyte proliferation by targeting the transcriptional coactivator Cited2. J Biol Chem 290(38):23162–23172. https://doi.org/10.1074/jbc.M115.672659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Borden A, Kurian J, Nickoloff E, Yang Y, Troupes CD, Ibetti J, Lucchese AM, Gao E, Mohsin S, Koch WJ, Houser SR, Kishore R, Khan M (2019) Transient introduction of miR-294 in the heart promotes cardiomyocyte cell cycle reentry after injury. Circ Res 125(1):14–25. https://doi.org/10.1161/circresaha.118.314223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L, Snitow M, Morley M, Li D, Petrenko N, Zhou S, Lu M, Gao E, Koch WJ, Stewart KM, Morrisey EE (2015) A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med 7(279):279ra238. https://doi.org/10.1126/scitranslmed.3010841

    Article  CAS  Google Scholar 

  48. Yang Y, Cheng HW, Qiu Y, Dupee D, Noonan M, Lin YD, Fisch S, Unno K, Sereti KI, Liao R (2015) MicroRNA-34a plays a key role in cardiac repair and regeneration following myocardial infarction. Circ Res 117(5):450–459. https://doi.org/10.1161/circresaha.117.305962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Torrini C, Cubero RJ, Dirkx E, Braga L, Ali H, Prosdocimo G, Gutierrez MI, Collesi C, Licastro D, Zentilin L, Mano M, Zacchigna S, Vendruscolo M, Marsili M, Samal A, Giacca M (2019) Common regulatory pathways mediate activity of microRNAs inducing cardiomyocyte proliferation. Cell Rep 27(9):2759–2771. https://doi.org/10.1016/j.celrep.2019.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hu Y, Jin G, Li B, Chen Y, Zhong L, Chen G, Chen X, Zhong J, Liao W, Liao Y, Wang Y, Bin J (2019) Suppression of miRNA let-7i-5p promotes cardiomyocyte proliferation and repairs heart function post injury by targetting CCND2 and E2F2. Clin Sci (Lond) 133(3):425–441. https://doi.org/10.1042/cs20181002

    Article  CAS  Google Scholar 

  51. Pandey R, Yang Y, Jackson L, Ahmed RP (2016) MicroRNAs regulating meis1 expression and inducing cardiomyocyte proliferation. Cardiovasc Regen Med 3:e1468. https://doi.org/10.14800/crm.1468

  52. Wang J, Chen X, Shen D, Ge D, Chen J, Pei J, Li Y, Yue Z, Feng J, Chu M, Nie Y (2019) A long noncoding RNA NR_045363 controls cardiomyocyte proliferation and cardiac repair. J Mol Cell Cardiol 127:105–114. https://doi.org/10.1016/j.yjmcc.2018.12.005

    Article  CAS  PubMed  Google Scholar 

  53. Qin X, Gao S, Yang Y, Wu L, Wang L (2019) microRNA-25 promotes cardiomyocytes proliferation and migration via targeting Bim. J Cell Physiol. https://doi.org/10.1002/jcp.28773

  54. Cai B, Ma W, Ding F, Zhang L, Huang Q, Wang X, Hua B, Xu J, Li J, Bi C, Guo S, Yang F, Han Z, Li Y, Yan G, Yu Y, Bao Z, Yu M, Li F, Tian Y, Pan Z, Yang B (2018) The long noncoding RNA CAREL controls cardiac regeneration. J Am Coll Cardiol 72(5):534–550. https://doi.org/10.1016/j.jacc.2018.04.085

    Article  PubMed  Google Scholar 

  55. Cao X, Wang J, Wang Z, Du J, Yuan X, Huang W, Meng J, Gu H, Nie Y, Ji B, Hu S, Zheng Z (2013) MicroRNA profiling during rat ventricular maturation: A role for miR-29a in regulating cardiomyocyte cell cycle re-entry. FEBS Lett 587(10):1548–1555. https://doi.org/10.1016/j.febslet.2013.01.075

    Article  CAS  PubMed  Google Scholar 

  56. Li X, He X, Wang H, Li M, Huang S, Chen G, Jing Y, Wang S, Chen Y, Liao W, Liao Y, Bin J (2018) Loss of AZIN2 splice variant facilitates endogenous cardiac regeneration. Cardiovasc Res 114(12):1642–1655. https://doi.org/10.1093/cvr/cvy075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Arif M, Pandey R, Alam P, Jiang S, Sadayappan S, Paul A, Ahmed RPH (2017) MicroRNA-210-mediated proliferation, survival, and angiogenesis promote cardiac repair post myocardial infarction in rodents. J Mol Med (Berl) 95(12):1369–1385. https://doi.org/10.1007/s00109-017-1591-8

    Article  CAS  Google Scholar 

  58. Wang L, Qin D, Shi H, Zhang Y, Li H, Han Q (2019) MiR-195-5p promotes cardiomyocyte hypertrophy by targeting MFN2 and FBXW7. Biomed Res Int 2019:1580982. https://doi.org/10.1155/2019/1580982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang X, Ji R, Liao X, Castillero E, Kennel PJ, Brunjes DL, Franz M, Mobius-Winkler S, Drosatos K, George I, Chen EI, Colombo PC, Schulze PC (2018) MicroRNA-195 regulates metabolism in failing myocardium via alterations in sirtuin 3 expression and mitochondrial protein acetylation. Circulation 137(19):2052–2067. https://doi.org/10.1161/CIRCULATIONAHA.117.030486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang N, Meng X, Mei L, Hu J, Zhao C, Chen W (2018) The long non-coding RNA SNHG1 attenuates cell apoptosis by regulating miR-195 and BCL2-like protein 2 in human cardiomyocytes. Cell Physiol Biochem 50(3):1029–1040. https://doi.org/10.1159/000494514

    Article  CAS  PubMed  Google Scholar 

  61. Verjans R, Peters T, Beaumont FJ, van Leeuwen R, van Herwaarden T, Verhesen W, Munts C, Bijnen M, Henkens M, Diez J, de Windt LJ, van Nieuwenhoven FA, van Bilsen M, Goumans MJ, Heymans S, Gonzalez A, Schroen B (2018) MicroRNA-221/222 family counteracts myocardial fibrosis in pressure overload-induced heart failure. Hypertension 71(2):280–288. https://doi.org/10.1161/HYPERTENSIONAHA.117.10094

    Article  CAS  PubMed  Google Scholar 

  62. Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, Xiao C, Bezzerides V, Bostrom P, Che L, Zhang C, Spiegelman BM, Rosenzweig A (2015) miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab 21(4):584–595. https://doi.org/10.1016/j.cmet.2015.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang S, Yin Z, Dai FF, Wang H, Zhou MJ, Yang MH, Zhang SF, Fu ZF, Mei YW, Zang MX, Xue L (2019) miR-29a attenuates cardiac hypertrophy through inhibition of PPARdelta expression. J Cell Physiol 234(8):13252–13262. https://doi.org/10.1002/jcp.27997

    Article  CAS  PubMed  Google Scholar 

  64. Zhang L, Zhang J, Tong Q, Wang G, Dong H, Wang Z, Sun Q, Wu H (2019) Reduction of miR-29a-3p induced cardiac ischemia reperfusion injury in mice via targeting Bax. Exp Ther Med 18(3):1729–1737. https://doi.org/10.3892/etm.2019.7722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lyu G, Guan Y, Zhang C, Zong L, Sun L, Huang X, Huang L, Zhang L, Tian XL, Zhou Z, Tao W (2018) TGF-beta signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging. Nat Commun 9(1):2560. https://doi.org/10.1038/s41467-018-04994-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li Z, Liu L, Hou N, Song Y, An X, Zhang Y, Yang X, Wang J (2016) miR-199-sponge transgenic mice develop physiological cardiac hypertrophy. Cardiovasc Res 110(2):258–267. https://doi.org/10.1093/cvr/cvw052

    Article  CAS  PubMed  Google Scholar 

  67. Liu L, Li J, Wang R, Wang Y, Wang G (2019) MicroRNA-298 exacerbates myocardial ischemic injury via targeting cyclin D1. Pharmazie 74(6):369–373. https://doi.org/10.1691/ph.2019.9303

    Article  CAS  PubMed  Google Scholar 

  68. Zhang Q, Yu N, Yu BT (2018) MicroRNA-298 regulates apoptosis of cardiomyocytes after myocardial infarction. Eur Rev Med Pharmacol Sci 22(2):532–539. https://doi.org/10.26355/eurrev_201801_14206

    Article  CAS  PubMed  Google Scholar 

  69. Li Z, Liu Y, Guo X, Sun G, Ma Q, Dai Y, Zhu G, Sun Y (2018) Long noncoding RNA myocardial infarctionassociated transcript is associated with the microRNA1505p/P300 pathway in cardiac hypertrophy. Int J Mol Med 42(3):1265–1272. https://doi.org/10.3892/ijmm.2018.3700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tang Y, Wang Y, Park KM, Hu Q, Teoh JP, Broskova Z, Ranganathan P, Jayakumar C, Li J, Su H, Tang Y, Ramesh G, Kim IM (2015) MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death. Cardiovasc Res 106(3):387–397. https://doi.org/10.1093/cvr/cvv121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Duan Y, Zhou B, Su H, Liu Y, Du C (2013) miR-150 regulates high glucose-induced cardiomyocyte hypertrophy by targeting the transcriptional co-activator p300. Exp Cell Res 319(3):173–184. https://doi.org/10.1016/j.yexcr.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  72. Lv L, Li T, Li X, Xu C, Liu Q, Jiang H, Li Y, Liu Y, Yan H, Huang Q, Zhou Y, Zhang M, Shan H, Liang H (2018) The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214. Mol Ther Nucleic Acids 10:387–397. https://doi.org/10.1016/j.omtn.2017.12.018

    Article  CAS  PubMed  Google Scholar 

  73. Zhao Y, Ponnusamy M, Zhang L, Zhang Y, Liu C, Yu W, Wang K, Li P (2017) The role of miR-214 in cardiovascular diseases. Eur J Pharmacol 816:138–145. https://doi.org/10.1016/j.ejphar.2017.08.009

    Article  CAS  PubMed  Google Scholar 

  74. Cai J, Yang J, Liu Q, Gong Y, Zhang Y, Zheng Y, Yu D, Zhang Z (2019) Mir-215-5p induces autophagy by targeting PI3K and activating ROS-mediated MAPK pathways in cardiomyocytes of chicken. J Inorg Biochem 193:60–69. https://doi.org/10.1016/j.jinorgbio.2019.01.010

    Article  CAS  PubMed  Google Scholar 

  75. Cai J, Yang J, Liu Q, Gong Y, Zhang Y, Zhang Z (2019) Selenium deficiency inhibits myocardial development and differentiation by targeting the mir-215-5p/CTCF axis in chicken. Metallomics 11(2):415–428. https://doi.org/10.1039/c8mt00319j

    Article  CAS  PubMed  Google Scholar 

  76. Zeng XC, Li L, Wen H, Bi Q (2016) MicroRNA-128 inhibition attenuates myocardial ischemia/reperfusion injury-induced cardiomyocyte apoptosis by the targeted activation of peroxisome proliferator-activated receptor gamma. Mol Med Rep 14(1):129–136. https://doi.org/10.3892/mmr.2016.5208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhu W, Lei J, Bai X, Wang R, Ye Y, Bao J (2018) MicroRNA-503 regulates hypoxia-induced cardiomyocytes apoptosis through PI3K/Akt pathway by targeting IGF-1R. Biochem Biophys Res Commun 506(4):1026–1031. https://doi.org/10.1016/j.bbrc.2018.10.160

    Article  CAS  PubMed  Google Scholar 

  78. Shen X, Soibam B, Benham A, Xu X, Chopra M, Peng X, Yu W, Bao W, Liang R, Azares A, Liu P, Gunaratne PH, Mercola M, Cooney AJ, Schwartz RJ, Liu Y (2016) miR-322/-503 cluster is expressed in the earliest cardiac progenitor cells and drives cardiomyocyte specification. Proc Natl Acad Sci U S A 113(34):9551–9556. https://doi.org/10.1073/pnas.1608256113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bian WS, Shi PX, Mi XF, Sun YY, Yang DD, Gao BF, Wu SX, Fan GC (2018) MiR-210 protects cardiomyocytes from OGD/R injury by inhibiting E2F3. Eur Rev Med Pharmacol Sci 22(3):743–749. https://doi.org/10.26355/eurrev_201802_14305

    Article  PubMed  Google Scholar 

  80. Sun W, Zhao L, Song X, Zhang J, Xing Y, Liu N, Yan Y, Li Z, Lu Y, Wu J, Li L, Xiao Y, Tian X, Li T, Guan Y, Wang Y, Liu B (2017) MicroRNA-210 modulates the cellular energy metabolism shift during H2O2-induced oxidative stress by repressing ISCU in H9c2 cardiomyocytes. Cell Physiol Biochem 43(1):383–394. https://doi.org/10.1159/000480417

    Article  CAS  PubMed  Google Scholar 

  81. Zou X, Wang J, Tang L, Wen Q (2019) LncRNA TUG1 contributes to cardiac hypertrophy via regulating miR-29b-3p. Vitro Cell Dev Biol Anim 55(7):482–490. https://doi.org/10.1007/s11626-019-00368-x

    Article  CAS  Google Scholar 

  82. Liu Y, Wang H, Wang X, Xie G (2019) MiR-29b inhibits ventricular remodeling by activating Notch signaling pathway in the rat myocardial infarction model. Heart Surg Forum 22(1):E019–E023. https://doi.org/10.1532/hsf.2079

    Article  PubMed  Google Scholar 

  83. Cai Y, Li Y (2019) Upregulation of miR-29b-3p protects cardiomyocytes from hypoxia-induced apoptosis by targeting TRAF5. Cell Mol Biol Lett 24:27. https://doi.org/10.1186/s11658-019-0151-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Deng S, Zhao Q, Zhou X, Zhang L, Bao L, Zhen L, Zhang Y, Fan H, Liu Z, Yu Z (2016) Neonatal heart-enriched miR-708 promotes differentiation of cardiac progenitor cells in rats. Int J Mol Sci 17(6). https://doi.org/10.3390/ijms17060875

  85. Zhang X, Dong H, Liu Y, Han J, Tang S, Si J (2019) Tetramethylpyrazine partially relieves hypoxia-caused damage of cardiomyocytes H9c2 by downregulation of miR-449a. J Cell Physiol. https://doi.org/10.1002/jcp.28151

  86. Cheng J, Wu Q, Lv R, Huang L, Xu B, Wang X, Chen A, He F (2018) MicroRNA-449a inhibition protects H9C2 cells against hypoxia/reoxygenation-induced injury by targeting the Notch-1 signaling pathway. Cell Physiol Biochem 46(6):2587–2600. https://doi.org/10.1159/000489686

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelrahman Yousry Afify.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 14 kb)

ESM 2

(DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afify, A.Y. A miRNA’s insight into the regenerating heart: a concise descriptive analysis. Heart Fail Rev 25, 1047–1061 (2020). https://doi.org/10.1007/s10741-019-09896-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-019-09896-w

Keywords

Navigation