Skip to main content
Log in

Dynamics of accumulation of coumarin-related compounds in leaves of Matricaria chamomilla after methyl jasmonate elicitation

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The effect of methyl jasmonate (MeJA) treatment on diploid and tetraploid plants of Matricaria chamomilla and the changes of the main physiological parameters and secondary metabolites content was studied. Leaf rosettes from 7-week-old plants were harvested at four different time points (24, 48, 72, 96 h) after foliar application of 0.4 mM MeJA. The treatment led to a moderate biomass accumulation accompanied by an accumulation of photosynthetic pigments and decrease in the total soluble proteins. The content of hydrogen peroxide and superoxide radical was most elevated at 24 and 72 h after the treatment. Although the values of stress parameters were higher in tetraploid plants (such as in control so in treated plants), their total increase after the MeJA application was similar. The absolute level of total soluble phenols and flavonoids in the controls was similar in both cultivars and their content was enhanced in 24- and 48-h variants, more rapidly in diploid plants. MeJA has been found to trigger different responses of the secondary metabolites accumulation. Almost all studied metabolites were higher in control plants in the tetraploid cultivar, but their biosynthesis was more stimulated in diploids. Significant changes, mainly increasing trends with a maximum between 24 and 48 h after elicitation, in the content of free coumarin herniarin and its glycosidic precursors (Z)- and (E)-2-β-d-glucopyranosyloxy-4-methoxycinnamic acid were observed. The umbelliferone level increased over time. The maximum values for chlorogenic acid and 1,5-dicaffeoylquinic acid were at 24-h and between the 24–72 h time points. Among dicycloethers, the amounts of (E)-form decreased with time, and for (Z)-form an opposite trend was observed, with a maximum of 96 h for diploid and 24 h for tetraploid after elicitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DW:

Dry weight

GMCA:

(Z)- and (E)-2-β-d-glucopyranosyloxy-4-methoxycinnamic acid

MeJA:

Methyl jasmonate

PAL:

Phenylalanine ammonia-lyase

References

  • Ahn SY, Kim SA, Cho KS, Yun HK (2014) Expression of genes related to flavonoid and stilbene synthesis as affected by signalling chemicals and Botrytis cinerea in grapevines. Biol Plant 58:758–767. doi:10.1007/s10535-014-0437-2

  • Ali MB, Yu KW, Hahn EJ, Paek KY (2006) Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors. Plant Cell Rep 6:613–620. doi:10.1007/s00299-005-0065-6

    Article  Google Scholar 

  • Ananieva K, Ananiev ED, Mishev K, Georgieva K, Malbeck J, Kaminek M, Van Staden J (2007) Methyl jasmonate is a more effective senescence-promoting factor in Cucurbita pepo (zucchini) cotyledons when compared with darkness at the early stage of senescence. J Plant Physiol 164:1179–1187. doi:10.1016/j.jplph.2006.07.008

    Article  CAS  PubMed  Google Scholar 

  • Benedek B, Gjoncaj N, Saukel J, Kopp B (2007) Distribution of phenolic compounds in Middleeuropean taxa of the Achillea millefolium L. Aggreg Chem Biodivers 4:849–857. doi:10.1002/cbdv.200790072

    Article  CAS  Google Scholar 

  • Bradford MMA (1976) Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Cao S, Cai Y, Yang Z, Joyce DC, Zheng Y (2014) Effect of MeJA treatment on polyamine, energy status and anthracnose rot of loquat fruit. Food Chem 145:86–89. doi:10.1016/j.foodchem.2013.08.019

    Article  CAS  PubMed  Google Scholar 

  • Chandra A, Dubey A (2010) Effect of ploidy levels on the activities of Δ1-pyrroline-5-carboxylate synthetase, superoxide dismutase and peroxidase in Cenchrus species grown under water stress. Plant Physiol Biochem 48:27–34. doi:10.1016/j.plaphy.2009.10.003

    Article  CAS  PubMed  Google Scholar 

  • Cheong J-J, Choi YD (2003) Methyl jasmonate as a vital substance in plants. Trends Genet 19:409–413. doi:10.1016/S0168-9525(03)00138-0

    Article  CAS  PubMed  Google Scholar 

  • Cohen H, Fait A, Tel-Zur N (2013) Morphological, cytological and metabolic consequences of autopolyploidization in Hylocereus (Cactaceae) species. BMC Plant Biol 13:173. doi:10.1186/1471-2229-13-173

    Article  PubMed  PubMed Central  Google Scholar 

  • Czerpak R, Piotrowska A, Szulecka K (2006) Jasmonic acid affects changes in the growth and some components content in alga Chlorella vulgaris. Acta Physiol Plant 28:195–203. doi:10.1007/BF02706531

    Article  CAS  Google Scholar 

  • Deng B, Du W, Liu Ch, Sun W, Tian S, Dong H (2012) Antioxidant response to drought, cold and nutrient stress in two ploidy levels of tobacco plants: low resource requirement confers polytolerance in polyploids? Plant Growth Regul 66:37–47. doi:10.1007/s10725-011-9626-6

    Article  CAS  Google Scholar 

  • Divya P, Puthusseri B, Neelwarne B (2014) The effect of plant regulators on the concentration of carotenoids and phenolic compounds in foliage of coriander. LWT Food Sci Technol 56:101–110. doi:10.1016/j.lwt.2013.11.012

    Article  CAS  Google Scholar 

  • dos Santos WD, Ferrarese MDLL, Finger A, Teixeira ACN, Ferrarese-Filho O (2004) Lignification and related enzymes in Glycine max root growth-inhibition by ferulic acid. J Chem Ecol 30:1203–1212. doi:10.1023/B:JOEC.0000030272.83794.f0

    Article  PubMed  Google Scholar 

  • Eliašová A, Repčák M, Pastírová A (2004) Quantitative changes of secondary metabolites of Matricaria chamomilla by abiotic stress. Z Natforsch C Biosci 59c:543–548. doi:0939Ð5075/2004/0700Ð0543

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620. doi:10.1016/0003-2697(76)90488-7

    Article  CAS  PubMed  Google Scholar 

  • Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421. doi:10.1016/0076-6879(90)86134-H

    Article  CAS  PubMed  Google Scholar 

  • Franke R, Schilcher H (2005) Chamomile: industrial profile. Taylor & Francis, New York

    Google Scholar 

  • Jana S, Choudhuri MA (1981) Glycolate metabolism of three submerged aquatic angiosperm during aging. Aquat Bot 12:345–354. doi:10.1016/0304-3770(81)90047-4

    Article  Google Scholar 

  • Jung S (2004) Effect of chlorophyll reduction in Arabidopsis thaliana by methyl jasmonate or norflurazon on antioxidant systems. Plant Physiol Biochem 42:225–231. doi:10.1016/j.plaphy.2004.01.001

  • Koo AJK, Howe GA (2009) The wound hormone jasmonate. Phytochemistry 70:1571–1580. doi:10.1016/j.phytochem.2009.07.018

  • Kováčik J, Klejdus B, Grúz J, Malčovská S, Hedbavny J (2010a) Role of ploidy in cadmium and nickel uptake by Matricaria chamomilla plants. Food Chem Toxicol 48:2109–2114. doi:10.1016/j.fct.2010.05.012

    Article  PubMed  Google Scholar 

  • Kováčik J, Klejdus B, Hedbavny J, Zoń J (2010b) Copper uptake is differentially modulated by phenylalanine ammonia-lyase inhibition in diploid and tetraploid chamomile. J Agric Food Chem 58:10270–10276. doi:10.1021/jf101977v

    Article  PubMed  Google Scholar 

  • Kumari GJ, Sudhakar C (2003) Effect of jasmonic acid on groundnut during early seedling growth. Biol Plant 43:453–456. doi:10.1023/B:BIOP.0000023894.72554.b2

    Google Scholar 

  • Liang Z-S, Yang D-F, Liang X, Zhang Y-H, Liu Y, Liu F-H (2012) Roles of reactive oxygen species in methyl-jasmonate and nitric oxide-induced tanshinone production in Salvia mittiorrhiza hairy roots. Plant Cell Rep 31:873–883. doi:10.1007/s00299-011-1208-6

    Article  CAS  PubMed  Google Scholar 

  • Lin HC, Tsai SH, Chen CS, Chang YC, Lee CM, Lai ZY, Lin CM (2008) Structure-activity relationships of coumarin derivatives on xanthine oxidase-inhibiting and free radical-scavenging activities. Biochem Pharmacol 75:1416–1425. doi:10.1016/j.bcp.2007.11.023

    Article  CAS  PubMed  Google Scholar 

  • Monzón GC, Pinedo M, Lamattina L, de la Canal L (2012) Sunflower root growth regulation: the role of jasmonic acid and its relation with auxins. Plant Growth Regul 66:129–136. doi:10.1007/s10725-011-9636-4

    Article  Google Scholar 

  • Noir S, Bömer M, Takahashi N, Ishida T, Tsui T-L, Balbi V, Shanahan H, Sugimoto K, Devoto A (2013) Jasmonate controls leaf growth by repressing cell proliferation and the onset of endoreduplication while maintaining a potential stand-by mode. Plant Physiol 161:1930–1951. doi:10.1104/pp.113.214908

  • Onrubia M, Moyano E, Bonfill M, Cusidó RM, Goossens A (2013) Palazón J (2013) Coronatine, a more powerful elicitor for inducing taxane biosynthesis in Taxus media cell cultures than methyl jasmonate. J Plant Physiol 170:211–219. doi:10.1016/j.jplph.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  • Ordoñez AAL, Gomez JD, Vattuone MA, Isla MI (2006) Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem 97:452–458. doi:10.1016/j.foodchem.2005.05.024

    Article  Google Scholar 

  • Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the introduction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191. doi:10.1105/tcp.13.1.179

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Pérez ME, Lemaire SD, Crespo JL (2012) Reactive oxygen species and autophagy in plants and algae. Plant Physiol 160:156–164. doi:10.1104/pp.112.199992

    Article  PubMed  PubMed Central  Google Scholar 

  • Petruľová V, Dučaiová Z, Repčák M (2014) Short-term UV-B dose stimulates production of protective metabolites in Matricaria chamomilla leaves. Photochem Photobiol 90:1061–1068. doi:10.1111/php.12300

    PubMed  Google Scholar 

  • Ram M, Prasad KV, Singh SK, Hada BS, Kumar S (2013) Influence of salicylic acid and methyl jasmonate elicitation on anthocyanin production in callus cultures of Rosa hybrid L. Plant Cell Tissue Organ 113:459–467. doi:10.1007/s11240-013-0287-1

    Article  CAS  Google Scholar 

  • Repčák M, Krausová T (2009) Phenolic glucosides in the course of ligulate flower development in diploid and tetraploid Matricaria chamomilla. Food Chem 116:19–22. doi:10.1016/j.foodchem.2009.01.085

    Article  Google Scholar 

  • Repčák M, Suvák M (2013) Methyl jasmonate and Echinothrips americanus regulate coumarin accumulation in leaves of Matricaria chamomilla. Biochem Syst Ecol 47:38–41. doi:10.1016/j.bse.2012.10.009

    Article  Google Scholar 

  • Repčák M, Paľove-Balang P, Dučaiová Z, Sajko M, Bendek F (2014) High nitrogen supply affects the metabolism of Matricaria chamomilla leaves. Plant Growth Regul 73:147–153. doi:10.1007/s10725-013-9876-6

    Article  Google Scholar 

  • Rudell DR, Mattheis JP, Fan X, Fellman JK (2002) Merhyl jasmonate enhances anthocyanin accumulation and modifies production of phenolics and pigments in ‘Fuji’ apples. J Am Soc Hortic Sci 127:435–441

    CAS  Google Scholar 

  • Sahu R, Gangopadhyay M, Dewanjee S (2013) Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activity in Solenostemon scutellarioides. Acta Physiol Plant 35:1473–1481. doi:10.1007/s11738-012-1188-3

    Article  CAS  Google Scholar 

  • Sato Y, Itagaki S, Kurokawa T, Ogura J, Kobayashi M, Hirano T, Sugawara M, Iseki K (2011) In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharm 1–2:136–138. doi:10.1016/j.ijpharm.2010.09.035

    Article  Google Scholar 

  • Sehr EM, Agusti J, Lehner R, Farmer EE, Schwarz M, Greb T (2010) Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant J 63:811–822. doi:10.1111/j.1365-313X.2010.04283.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singleton VL, Rossi J (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Sircar D, Cardoso HG, Mukherjee Ch, Mitra A, Arnholdt-Schmitt B (2012) Alternative oxidase (AOX) and phenolic metabolism in methyl jasmonate-treated hairy root cultures of Daucus carota L. J Plant Physiol 169:657–663. doi:10.1016/j.jplph.2011.11.019

    Article  CAS  PubMed  Google Scholar 

  • Stojakowska A, Malarz J, Kisiel W (2002) Salicylate and methyl jasmonate differentially influence diacetylene accumulation pattern in transformed roots of feverfew. Plant Sci 163:1147–1152. doi:10.1016/S0168-9452(02)00328-X

    Article  CAS  Google Scholar 

  • Suzuki N, Mittler R (2012) Reactive oxygen species-dependent wound responses in animals and plants. Free Radic Biol Med 53:2269–2276. doi:10.1016/j.freeradbiomed.2012.10.538

    Article  CAS  PubMed  Google Scholar 

  • Takahashi I, Hara M (2014) Enhancement of strch accumulation in plants by exogenously applied methyl jasmonate. Plant Biotehnol Rep 8:143–149. doi:10.1007/s11816-013-0304-1

  • Tassoni A, Durante L, Ferri M (2012) Combined elicitation of methyl-jasmonate and red light on stilbene and anthocyanin biosynthesis. J Plant Physiol 169:775–781. doi:10.1016/j.jplph.2012.01.017

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya T, Ohta H, Okawa K, Iwamatsu A, Shimada H, Masuda T, Takamiya K-I (1999) Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proc Natl Acad Sci USA 96:15362–153679. doi:10.1073/pnas.96.26.15362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Ma Ch, Li Z, Ma L, Wang H, Ye H, Xu G, Liu B (2010) Effects of exogenous methyl jasmonate on artemisinin biosynthesis and secondary metabolites in Artemisia annua L. Ind Crop Prod 31:214–218. doi:10.1016/j.indcrop.2009.10.008

    Article  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058. doi:10.1093/aob/mct067

  • Wellburn AR (1994) The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolutions. J Plant Physiol 144:307–313. doi:10.1016/S0176-1617(11)81192-2

  • Zhang Y, Turner JG (2008) Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis. PLoS One 11:e3699. doi:10.1371/journal.pone.0003699

    Article  Google Scholar 

  • Zhang L, Xing D (2008) Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant Cell Physiol 49:1092–1111. doi:10.1093/pcp/pcn086

    Article  CAS  PubMed  Google Scholar 

  • Zhang X-Y, Hu Ch-G, Yao J-L (2010) Tetraploidization of diploid Dioscorea results in activation of the antioxidant defense system and increased heat tolerance. J Plant Physiol 167:88–94. doi:10.1016/j.jplph.2009.07.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Slovak Grand Agency under contract VEGA 1/0046/14 and the UPJS internal grant system under contract VVGS PF-2013-95. We thank Mrs. Anna Michalčová and Mrs. Margita Buzinkaiová for their valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Dučaiová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dučaiová, Z., Sajko, M., Mihaličová, S. et al. Dynamics of accumulation of coumarin-related compounds in leaves of Matricaria chamomilla after methyl jasmonate elicitation. Plant Growth Regul 79, 81–94 (2016). https://doi.org/10.1007/s10725-015-0114-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0114-2

Keywords

Navigation