Skip to main content
Log in

Unravelling the genetic diversity and phylogenetic relationships of Indian Capsicum through fluorescent banding

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Hot chilli species of Capsicum are one of the most significant spice crops in India having several genetically distinct cultivars. The present study was targeted to upgrade chromosomal database of 15 cultivars belonging to C. annuum L., C. frutescens L. and C. chinense Jacq. EMA-based fluorochrome banding with GC-specific stain Chromomycin A3 (CMA) was elemental to reveal specialization in karyotypes that could not be traced out by Giemsa-stained preparations. CMA banding pattern was combined with karyomorphometric indices to statistically evaluate chromosomal relationship among the cultivars. The marker chromosome pairs 11 and 12 containing nucleolar CMA bands could be suggested as the evolutionary landmarks in ‘C. annuum complex’. We found direct correspondence between fruit morphotype variation and CMA banding pattern to demonstrate maximum genetic diversity within C. annuum, followed by C. frutescens while Bhut jolokia of C. chinense displayed genetic uniformity. UPGMA phenogram upheld distinct species separation, cultivar diversity and relationships within and among the species. Out of nine C. annuum cultivars, at least two cultivars showed some sort of genetic relationship with C. chinense, particularly the Ghee cultivar shares more proximity with C. chinense. The fluorescent karyotype database reliably symbolized uniqueness of Capsicum germplasm of India, especially from the NEH sector that grows Bhut jolokia. Our attempt is believed to complement genomic investigation in the popular and exotic chilli cultivars of India and interest breeders in search of alternative genetic resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

All data generated or analysed during this study are included in this published article.

References

  • Arano H (1963) Cytological studies in subfamily Carduoideae (Compositae) of Japan. IX. Bot Mag Tokyo 76:32

    Article  Google Scholar 

  • Baral J, Bosland PW (2002) Genetic diversity of a Capsicum germplasm collected from Nepal as determined by randomly amplified polymorphic DNA marker. J Am Soc Hortic Sci 127(3):316–324

    Google Scholar 

  • Barboza GE, Garcia CC, Gonzalez SL, Scaldaferro M, Reyes X (2019) Four new species of Capsicum (Solanaceae) from the tropical Andes and an update on the phylogeny of the genus. PloS ONE 14(1):e0209792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhowmick BK, Jha S (2019) Differences in karyotype and fluorochrome banding patterns among variations of Trichosanthes cucumerina with different fruit size. Cytologia 84(3):237–245

    Article  CAS  Google Scholar 

  • Bosland PW, Baral JB (2007) ‘Bhut Jolokia’—the world’s hottest known chile pepper is a putative naturally occurring interspecific hybrid. Hortic Sci 42(2):222–224

    CAS  Google Scholar 

  • Carrizo García C, Sterpetti M, Volpi P, Ummarino M, Saccardo F (2013) Wild Capsicums: identification and in situ analysis of Brazilian species. In: Lanteri S, Rotino GL (eds) Breakthroughs in the genetics and breeding of Capsicum and eggplant. Eucarpia, Turin, pp 205–213

  • Carrizo García C, Barfuss MH, Sehr EM, Barboza GE, Samuel R, Moscone EA, Ehrendorfer F (2016) Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae). Ann Bot 118(1):35–51

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho SIC, Ragassi CF, Bianchetti LB, Reifschneider FJB, Buso GSC, Faleiro FG (2014) Morphological and genetic relationships between wild and domesticated forms of peppers (Capsicum frutescens L. and C. chinense Jacquin). Genet Mol Res 13(3):7447–7464

    Article  CAS  PubMed  Google Scholar 

  • Cheema SK, Pant MR (2013) Karyotype analysis of seven cultivated varieties of Capsicum annuum L. Caryologia 66(1):70–75

    Article  Google Scholar 

  • Chennaveeraiah MS, Habib AF (1966) Recent advances in cytogenetics of Capsicums. In: Proceeding of Autumn School Botony, pp 69–90

  • Darlington CD, Wylie AP (1955) Chromosomes atlas of cultivated plants, 2nd edn. George Allen and Unwin, London

    Google Scholar 

  • Datta PC (1966) Cytogenetics of Capsicum annuum L. var. grossum Sendt. In: Proceeding of Indian Science Congress III Abs, p 283

  • Dixit PD (1931) A cytological study of Capsicum annuum. Indian J Agric Sci 1(4):419–433

    Google Scholar 

  • Emboden WA (1961) A preliminary study of the crossing relationships of Capsicum baccatum. Butler Univ Bot Stud 14(1):1–5

    Google Scholar 

  • Fukui K (1996) Plant chromosomes at mitosis. In: Fukui K, Nakayama S (eds) Plant chromosomes: laboratory methods. CRC Press Inc., Boca Raton, pp 1–17

    Google Scholar 

  • Government of India (2009) Post harvest profile of Chilli. Ministry Of Agriculture (Department Of Agriculture & Cooperation) Directorate Of Marketing & Inspection Branch. www.agmarknet.nic.in

  • Government of India (2018) Horticultural Statistics at a Glance, Ministry of Agriculture & Farmers' Welfare, Department of Agriculture, Cooperation & Farmers' Welfare, Horticulture Statistics Division. www.agricoop.nic.in

  • Guerra M (2008) Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenet Genom Res 120(3–4):339–350

    Article  CAS  Google Scholar 

  • Guerra M, Santos KGBD, Silva AEB, Ehrendorfer F (2000) Heterochromatin banding patterns in Rutaceae-Aurantioideae—a case of parallel chromosomal evolution. Am J Bot 87(5):735–747

    Article  CAS  PubMed  Google Scholar 

  • Haralayya B, Asha IS (2017) Molecular marker application in Capsicum spp.: a supplement to conventional plant breeding. Int J Curr Microbiol App Sci 6(11):3840–3855

    Article  CAS  Google Scholar 

  • Hizume M (2015) Fluorescent banding pattern in chromosomes of Tsuga forrestii and T. sieboldii, Pinaceae. Chromosome Bot 10(3):95–100

    Article  Google Scholar 

  • Hizume M, Ohgiku A, Tanaka A (1989) Chromosome banding in the genus Pinus. Bot Mag Shokubutsu-gaku-zasshi 102(1):25–36

    Article  Google Scholar 

  • Huskins CL, La-Cour LF (1930) Chromosome numbers in Capsicum. Am Nat 64:382–383

    Article  Google Scholar 

  • Huziwara Y (1962) Karyotype analysis in some genera of Compositae. VIII. Further studies on the chromosomes of Aster. Am J Bot 49:116–119

    Article  Google Scholar 

  • Jha TB, Saha PS (2017) Characterization of some Indian Himalayan Capsicums through floral morphology and EMA-based chromosome analysis. Protoplasma 254(2):921–933

    Article  PubMed  Google Scholar 

  • Jha TB, Yamamoto M (2012) Application of EMA: fluorescence staining and FISH of rDNA in analysis of Aloe vera (L.) Burm. f. chromosomes. Bull Fac Agric Kagoshima Univ 62:83–89

    Google Scholar 

  • Jha TB, Dafadar A, Ghorai A (2012) New genetic resource in Capsicum L. from Eastern Himalayas. Plant Genet Resour 10(2):141–144

    Article  Google Scholar 

  • Jha TB, Mahanti A, Ghorai A (2015) Karyotype analysis of Indian lentils through EMA based Giemsa staining. Caryologia 68(4):280–288

    Article  Google Scholar 

  • Jha TB, Saha PS, Nath S, Das A, Jha S (2017) Morphological and cytogenetical characterization of ‘Dalle Khursani’: a polyploid cultivated Capsicum of India. Sci Hortic 215:80–90

    Article  Google Scholar 

  • Kim S, Park M, Yeom S et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet. https://doi.org/10.1038/ng.2877

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurata N, Omura T (1978) Karyotype analysis in rice. 1. A new method for identifying all chromosome pairs. Japan J Genet 53:251–255

    Article  Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditus 52:210–220

    Google Scholar 

  • Milla A (2006) Capsicum de capsa, cápsula: el pimiento. Pimientos, Compendios de Horticultura, pp 21–31

  • Moscone EA, Lambrou M, Ehrendorfer F (1996) Fluorescent chromosome banding in the cultivated species of Capsicum (Solanaceae). Plant Syst Evol 202:37–63

    Article  Google Scholar 

  • Moscone EA, Loidl J, Ehrendorfer F, Hunziker AT (1995) Analysis of active nucleolus organizing regions in Capsicum (Solanaceae) by silver staining. Am J Bot 82(2):276–287

    Article  Google Scholar 

  • Moscone EA, Scaldaferro MA, Grabiele M et al (2007) The evolution of chili peppers (Capsicum–Solanaceae): a cytogenetic perspective. Acta Hortic 745:137–169

    Article  CAS  Google Scholar 

  • Ohta Y (1962) Karyotype of Capsicum. Seiken Zhio/Rep. Kihara. Inst Biol Res 13:93–99

    Google Scholar 

  • Paszko B (2006) A critical review and a new proposal of karyotype asymmetry indices. Plant Syst Evol 258:39–48

    Article  Google Scholar 

  • Pickersgill B (1971) Relationships between weedy and cultivated forms in some species of chili peppers (genus Capsicum). Evolution 25(4):683–691

    PubMed  Google Scholar 

  • Pickersgill B (1988) The genus Capsicum: a multidisciplinary approach to the taxonomy of cultivated and wild plants. Biol Zent 107:381–389

    Google Scholar 

  • Pickersgill B (1991) Cytogenetics and evolution of Capsicum L. Chromosome engineering in plants: genetics, breeding, evolution, part B. Elsevier, Amsterdam, pp 139–160

    Google Scholar 

  • Pozzobon MT, Schifino-Wittmann MT, De Bem Bianchetti L (2006) Chromosome numbers in wild and semidomesticated Brazilian Capsicum L. (Solanaceae) species: do x = 12 and x = 13 represent two evolutionary lines? Bot J Linn Soc 151(2):259–269

    Article  Google Scholar 

  • Raghavan TS, Venkatasubban KP (1940) Studies in the S. Indian chillies I. Proc Indian Acad Sci 12(B):29–46

    Google Scholar 

  • Reddy MK, Srivastava A, Kumar S, Kumar R, Chawda N, Ebert AW, Vishwakarma M (2014) Chili (Capsicum annuum L.) breeding in India: an overview. SABRAO J Breed Genet 46(2):160–173

    Google Scholar 

  • Rohlf FJ (1998) Numerical taxonomy and multivariate analysis system. Ver. 2.0. Exeter Publications, New York

    Google Scholar 

  • Scaldaferro MA, Moscone EA (2019) Cytology and DNA content variation of Capsicum genomes. In: Ramchiary N, Kole C (eds) The Capsicum genome. Springer, Cham, pp 57–84

    Chapter  Google Scholar 

  • Scaldaferro MA, Grabiele M, Moscone EA (2013) Heterochromatin type, amount and distribution in wild species of chili peppers (Capsicum, Solanaceae). Genet Resour Crop Evol 60(2):693–709

    Article  CAS  Google Scholar 

  • Scaldaferro MA, da Cruz MVR, Cecchini NM, Moscone EA (2016) FISH and AgNor mapping of the 45S and 5S rRNA genes in wild and cultivated species of Capsicum (Solananceae). Genome 59(2):95–113

    Article  CAS  PubMed  Google Scholar 

  • Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58(4):307–324

    Article  CAS  PubMed  Google Scholar 

  • Sinclair JH, Brown DD (1971) Retention of common nucleotide sequences in the ribosomal deoxyribonucleic acid of eukaryotes and some of their physical characteristics. Biochemistry 10:2761–2769

    Article  CAS  PubMed  Google Scholar 

  • Sinha NP (1950) The somatic chromosomes and meiosis in Capsicum. Indian J Genet 10:36–42

    Google Scholar 

  • Soltis DE, Visger CJ, Soltis PS (2014) The polyploidy revolution then and now: stebbins revisited. Am J Bot 101(7):1057–1078

    Article  PubMed  Google Scholar 

  • Stebbins GL (1971) Chromosomal changes, genetic recombination and speciation. In: Barrington EJW, Willis AJ (eds) Chromosomal evolution in higher plants. Edward Arnold Publishers Pvt. Ltd., London, pp 72–123

    Google Scholar 

  • Sugiura T (1936) Studies on the chromosome numbers in higher plants, with special reference to cytokinesis I. Cytologia 7(4):544–595

    Article  Google Scholar 

  • Walsh BM, Hoot SB (2001) Phylogenetic relationships of Capsicum (Solanaceae) using DNA sequences from two noncoding regions: the chloroplast atpB-rbcL spacer region and nuclear waxy introns. Int J Plant Sci 162:1409–1418

    Article  CAS  Google Scholar 

  • Yamamoto M (2012) Recent progress on studies of chromosome observation in deciduous fruit trees. J Japan Soc Hortic Sci 81(4):305–313

    Article  Google Scholar 

  • Zarco CR (1986) A new method for estimating karyotype asymmetry. Taxon 35(3):526–530

    Article  Google Scholar 

  • Zhang XM, Zhang ZH, Gu XZ et al (2016) Genetic diversity of pepper (Capsicum spp.) germplasm resources in China reflects selection for cultivar types and spatial distribution. J Integr Agric 15(9):1991–2001

    Article  CAS  Google Scholar 

  • Zhou HC, Waminal NE, Kim HH (2019) In silico mining and FISH mapping of a chromosome-specific satellite DNA in Capsicum annuum L. Genes Genom 41(9):1001–1006

    Article  CAS  Google Scholar 

Download references

Acknowledgement

TBJ acknowledges Principal Dr. S. Dutta and Dr. P. Roy, Head, Dept. of Botany Maulana Azad College for providing basic facilities.

Funding

Basic funding was provided by the college authority.

Author information

Authors and Affiliations

Authors

Contributions

TBJ and BKB have contributed equally. Both the authors read and approved the final manuscript.

Corresponding author

Correspondence to Timir Baran Jha.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, T.B., Bhowmick, B.K. Unravelling the genetic diversity and phylogenetic relationships of Indian Capsicum through fluorescent banding. Genet Resour Crop Evol 68, 205–225 (2021). https://doi.org/10.1007/s10722-020-00980-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-020-00980-x

Keywords

Navigation