Skip to main content
Log in

Differential accumulation of high and low molecular weight heat shock proteins in Basmati rice (Oryza sativa L.) cultivars

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The accumulation of various heat shock proteins (HSPs) and their relationship with the inbuilt cold tolerance observed in Kashmir Basmati was studied. Five Basmati rice verities (Oryza sativa), Basmati-370, Basmati-Pak, Basmati-198, Basmati-385 and Kashmir Basmati were given temperature shock of 45 and 50°C. Temperature shocks were given for 16 h in incubator preheated to 45 and 50°C and 85% relative humidity. Proteins were extracted and separated on 10% acrylamide gels with 1 mm thickness and visualized for protein fractions. Accumulation of 40 kDa HSPs were observed in all the cultivars, and 20 kDa HSPs specifically in Kashmir Basmati. Small amounts of high molecular weight HSPs were observed in un-treated (control) plants of Kashmir Basmati, and it increased considerably after heat shock. The 20 kDa HSP was only expressed in heat-treated Kashmir Basmati. Differences in the expression of heat shock proteins in the tested varieties have been described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adnan S, David W, Susan L (1996) The correlation between heat-shock protein accumulation and persistence and chilling tolerance in tomato fruit. Plant Physiol 110:531–537. doi:10.1104/pp.110.2.531

    Article  Google Scholar 

  • Anderson JV, Li Q-B, Haskell DW, Guy CL (1994) Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation. Plant Physiol 104:1359–1370. doi:10.1104/pp.104.4.1359

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (1982) Ten years of NIAB: second five years report of scientific activities. Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan, pp 25–32

  • Anonymous (1987) Fifteen years of NIAB: third five years of scientific activities. Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan, pp: 9–16

  • Anonymous (2001) Special report FAO/WFP crop and food supply assessment mission to Pakistan

  • Arrigo AP (1998) Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol Chem 379:19–26

    CAS  PubMed  Google Scholar 

  • Awan MA, Cheema AA (1985) New mutant genes for early maturity and dwarfism in Basmati rice. In: Proc. Nat. Seminar on Rice Research and Production, held at Kala Shah Kaku, Lahore, Pakistan, April 25–27, 1985, pp 7–13

  • Awan MA, Bari B, Cheema AA, Akbar M (1977) List of mutant varieties. Mut Breed News 1:15

    Google Scholar 

  • Bartels D, Furini A, Ingram J, Salamini F (1997) Responses of plants to dehydration stress: a molecular analysis. In: Belhassen E (ed) Drought tolerance in higher plants: genetical, physiological and molecular biological analysis. Kluwer, Dordrecht

    Google Scholar 

  • Bauman JW, Liu J, Klassen CD (1993) Production of metallothionein and heat shock proteins in response to metals. Fundam Appl Toxicol 21:15–22. doi:10.1006/faat.1993.1066

    Article  CAS  PubMed  Google Scholar 

  • Bharadwaj S, Adnan A, Ovsenek N (1999) Multiple components of the HSP90 chaperone complex function in regulation of HSF1 in vivo. Mol Cell Biol 19:8033–8041

    CAS  PubMed  Google Scholar 

  • Blum H, Beier H, Gross H (1987) Improved silver staining of plant proteins. RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99. doi:10.1002/elps.1150080203

    Article  CAS  Google Scholar 

  • Boreham DR, Mitchel RE (1994) Regulation of heat and radiation stress responses in yeast by hsp-104. Radiat Res 137:190–195. doi:10.2307/3578811

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Bray E (1997) A plant response to water deficit. Trends Plant Sci 2:48–54. doi:10.1016/S1360-1385(97)82562-9

    Article  Google Scholar 

  • Bukau B, Horwitch AL (1998) The HSP-70 and HSP-60 chaperon machines. Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  • Cabané M, Calvet P, Vincens P, Boudet AM (1993) Characterization of chilling-acclimation-related proteins in soybean and identification of one as a member of the heat shock protein (HSP 70) family. Planta 190:346–353. doi:10.1007/BF00196963

    Article  PubMed  Google Scholar 

  • Cellier F, Conejero G, Breitler JC, Casse F (1998) Molecular and physiological responses to water deficit in drought tolerant and drought sensitive lines of sunflower: accumulation of dehydrin transcripts correlates with tolerance. Plant Physiol 116:319–328. doi:10.1104/pp.116.1.319

    Article  CAS  PubMed  Google Scholar 

  • Drummond IA, Steinhardt RA (1987) The role of oxidative stress in the induction of Drosophila heat-shock proteins. Exp Cell Res 173:439–449. doi:10.1016/0014-4827(87)90284-9

    Article  CAS  PubMed  Google Scholar 

  • Farooq S, Iqbal N, Arif M (1998) Detection of genetic variability in Basmati and non-Basmati rice varieties and their radiation induced mutants through Random Amplified Polymorphic DNA (RAPD). In: Technical Document N0. 1010. Research Coordinated Programme on “Application of DNA based marker mutations in sexually propagated cereal crops”. International Atomic Energy Agency (IAEA), Vienna, Austria, pp 85–96

  • Feder ME (1999) Heat-shock proteins, molecular chaperones and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:234–282. doi:10.1146/annurev.physiol.61.1.243

    Article  Google Scholar 

  • Giorini S, Galili G (1991) Characterization of HSP-70 cognate proteins from wheat. TAG 82:615–620

    CAS  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:151–1520

    Google Scholar 

  • James P, Pfund C, Craig EA (1994) Functional specificity among Hsp-70 molecular chaperones. Science 275:387–389. doi:10.1126/science.275.5298.387

    Article  Google Scholar 

  • Kim R, Kim KK, Yokota H, Kim SH (1998) Small heat shock protein of Methanacoccus jannaschii, a hyperthemophile. Proc Natl Acad Sci USA 95:9129–9133. doi:10.1073/pnas.95.16.9129

    Article  CAS  PubMed  Google Scholar 

  • Krishna P, Sacco M, Cherutti JF, Hill S (1995) Cold-induced accumulation of hsp90 transcripts in Brassica napus. Plant Physiol 107:915–923

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structure proteins assembly of the head of bacteria-phage T4. Nat 22:680–685. doi:10.1038/227680a0

    Article  Google Scholar 

  • Lee GJ, Pokala N, Vierling E (1995) Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem 270:10432–10438. doi:10.1074/jbc.270.18.10432

    Article  CAS  PubMed  Google Scholar 

  • Millar AA, Dennis E (1996) Protein synthesis during oxygen deprivation in cotton. Aust J Plant Physiol 23:341–348

    Article  CAS  Google Scholar 

  • Morimoto RI (1997) The heat shock response: regulation and functions of heat-shock proteins and molecular chaperones. Essays Biochem 32:17–29

    CAS  PubMed  Google Scholar 

  • Neven LG, Haskell DW, Guy CL, Denslow N, Klein PA, Green LG, Silverman A (1992) Association of 70-kilodalton heat-shock cognate proteins with acclimation to cold. Plant Physiol 99:1362–1369. doi:10.1104/pp.99.4.1362

    Article  CAS  PubMed  Google Scholar 

  • Pareek A, Singla SL, Grover A (1995) Immunological evidence for accumulation of two high-molecular-weights (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera. Plant Mol Biol 29:293–301. doi:10.1007/BF00043653

    Article  CAS  PubMed  Google Scholar 

  • Plater ML, Goode D, Carbbe MJC (1996) Effects of site-directed mutations on the chaperone-like activity of α B-crystallin. J Biol Chem 271:28558–28566. doi:10.1074/jbc.271.45.28558

    Article  CAS  PubMed  Google Scholar 

  • Polla BS (1998) A role of heat shock proteins in inflammation. Immunol Today 9:134–137. doi:10.1016/0167-5699(88)91199-1

    Article  Google Scholar 

  • Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small hat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins). Cell Stress Chaperones 6:225–237. doi:10.1379/1466-1268(2001)006<0225:TEFOAT>2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334. doi:10.1104/pp.115.2.327

    Article  CAS  PubMed  Google Scholar 

  • Singla SL, Pareek A, Grover A (1998) Plant HSP 100 family with special reference to rice. J Biosci 23:337–345. doi:10.1007/BF02936126

    Article  CAS  Google Scholar 

  • Ukaji N, Kuwabara C, Takezawa D, Arakawa K, Yoshida S, Fujikawa S (1999) Accumulation of small heat-shock protein homologs in the endoplasmic reticulum of cortical parenchyma cells in mulberry in association with seasonal cold acclimation. Plant Physiol 120(2):481–490

    Article  CAS  PubMed  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620. doi:10.1146/annurev.pp.42.060191.003051

    Article  CAS  Google Scholar 

  • Zeng SY, Wang M, Li M, Zeng SX, Wang YR, Li MR (1997) Protein change in rice seedlings during enhancement of chilling resistance by different stress pretreatments. Acta Bot Sin 39:130–136

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Iqbal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iqbal, N., Farooq, S., Arshad, R. et al. Differential accumulation of high and low molecular weight heat shock proteins in Basmati rice (Oryza sativa L.) cultivars. Genet Resour Crop Evol 57, 65–70 (2010). https://doi.org/10.1007/s10722-009-9451-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-009-9451-1

Keywords

Navigation