Skip to main content
Log in

Delimitation of Amaranthus cruentus L. and Amaranthus caudatus L. using micromorphology and AFLP analysis: an application in germplasm identification

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The ‘Morelos’ accessions of Amaranthus from Mexico demonstrate taxonomic ambiguity at the basic morphologic level. The main cause is the enormous morphological and genetic variation exhibited by the species in the genus. Although basic morphological criteria can be applied to herbarium specimens or germplasm collections for quick taxonomic identification, the morphological data alone can be misleading. To ascertain the taxonomic identity of the ‘Morelos’ accessions and their hypothesized species affiliation to Amaranthus caudatus or Amaranthus cruentus, we conducted a comparative analysis of phylogenetic relationships among these taxa/accessions using amplified fragment length polymorphism (AFLP) and micromorphology methods. Based on AFLP data, all the controversial ‘Morelos’ accessions can be consistently placed into a single A. cruentus species clade, which is clearly separated from the A. caudatus species clade. The AFLP-based phylogenetic relationship of ‘Morelos’ and delimitation of A. cruentus and A. caudatus are further supported by micromorphology, showing that the combination of these techniques can provide more reliable data for germplasm identification than each method used alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFLP:

amplified fragment-length polymorphism

RAPD:

randomly amplified polymorphic DNA

RFLP:

restriction fragment length polymorphism

SEM:

scanning electron microscopy

References

  • Brenner D.M., Baltensperger D.D., Kulakow P.A., Lehmann J.W., Myers R.L., Slabbert M.M. and Sleugh B.B. (2000). Genetic resources and breeding of Amaranthus. Plant Breed. Rev. 19: 227–285 .

    CAS  Google Scholar 

  • Busso C.S., Devos K.M., Ross G., Mortimore M., Adams W.M., Ambrose M.J., Alldrick S. and Gale M.D. (2000). Genetic diversity within and among landraces of pearl millet (Pennisetum glaucum) under farmer management in West Africa. Genet. Resour. Crop Evol. 47: 561–568 .

    Article  Google Scholar 

  • Cai Y., Sun M. and Corke H. (1998). Colorant properties and stability of Amaranthus betacyanin pigments. J. Agric. Food. Chem. 46: 4491–4495 .

    Article  CAS  Google Scholar 

  • Chan K.F. and Sun M. (1997). Genetic diversity detected by isozyme and RAPD analysis of crop and wild species of Amaranthus. Theor. Appl. Genet. 95: 865–873 .

    Article  CAS  Google Scholar 

  • Cheng Z., Lu B.-R., Sameshima K., Fu D.-X. and Chen J.-K. (2004). Identification and genetic relationships of kenaf (Hibiscus cannabinus L.) germplasm revealed by AFLP analysis. Genet. Resour. Crop Evol. 51: 393–401 .

    Article  CAS  Google Scholar 

  • Costea M., Sanders A. and Waines G. (2001). Preliminary results toward a revision of the Amaranthus hybridus species complex (Amaranthaceae). Sida 19: 931–974 .

    Google Scholar 

  • Dehmer K.J. and Hammer K. (2004). Taxonomic status and geographic provenance of germplasm accessions in the Solanum nigrum L. complex: AFLP data. Genet. Resour. Crop Evol. 51: 551–558 .

    Article  CAS  Google Scholar 

  • Hansen L.B., Siegismund H.R. and Jørgensen R.B. (2001). Introgression between oilseed rape (Brassica napus L.) and its weedy relative B. rapa L. in a natural population. Genet. Resour. Crop Evol. 48: 621–627 .

    Article  Google Scholar 

  • Huang J. and Sun M. (1999). A modified AFLP with fluorescence-labeled primers and automated DNA sequencer detection for efficient fingerprinting analysis in plants. Biotechnol. Tech. 13: 277–278 .

    Article  CAS  Google Scholar 

  • Huang J., Corke H. and Sun M. (2002). Highly polymorphic AFLP markers as a complementary tool to ITS sequences in assessing genetic diversity and phylogenetic relationships of sweetpotato (Ipomoea batatas (L.) Lam.) and its wild relatives. Genet. Resour. Crop Evol. 49: 541–550 .

    Article  Google Scholar 

  • Jones C.J., Edwards K.J., Castaglione S., Winfield M.O., Sale F., Bredemeijer G., Vosman B., Matthes M., Daly A., Brettschneider R., Bettini P., Buiatti P., Maestri E., Malcevshi A., Marmiroli N., Aert R., Volckaert G., Rueda J., Linacero R., Vazquez A., Karp A. and Wiel C. (1997). Reproducibility of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol. Breed. 3: 381–390 .

    Article  CAS  Google Scholar 

  • Lanoue K.Z., Wolf P.G., Browning S. and Hood E.E. (1996). Phylogenetic analysis of restriction-site variation in wild and cultivated Amaranthus species (Amaranthaceae). Theor. Appl. Genet. 93: 722–732 .

    Article  CAS  Google Scholar 

  • Lin J.J., Kuo J., Ma J., Saunders J.A., Beard H.S., MacDonald M.H., Kenworthy W., Ude G.N. and Matthews B.F. (1996). Identification of molecular markers in soybean comparing RFLP, RAPD, and AFLP DNA mapping techniques. Plant Mol. Biol. Report 14: 156–169 .

    CAS  Google Scholar 

  • Nei M. and Li W.-H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269–5273 .

    Article  PubMed  CAS  Google Scholar 

  • Pandey R.M. (1999). Genet. Resour. Crop Evol. 46: 219–224 .

    Article  Google Scholar 

  • Seman K., Bjornstad A. and Stedje B. (2003). Genetic diversity and differentiation in Ethiopian populations of Phytolacca dodecandra as revealed by AFLP and RAPD analyses. Genet. Resour. Crop Evol. 50: 649–661 .

    Article  CAS  Google Scholar 

  • Swofford D.L. (2001). PAUP*. Phylogenetic Analysis Using Parsimony (and Other Methods). Sinauer Associates, Sunderland, Massachusetts .

    Google Scholar 

  • Transue D.K., Fairbanks D.J., Robison L.R. and Andersen W.R. (1994). Species identification of RAPD analysis of grain amaranth genetic resources. Crop Sci. 34: 1385–1389 .

    Article  Google Scholar 

  • Treuren R. (2001). Identification of intra-accession genetic diversity in selfing crops using AFLP markers: implications for collection management. Genet. Resour. Crop Evol. 48: 287–295 .

    Article  Google Scholar 

  • Magda A., Hoekstra R., Treuren R. and Hintum T.J.L. (2004). Genetic and economic aspects of marker-assisted reduction of redundancy from a wild potato germplasm collection. Genet. Resour. Crop Evol. 51: 277–290 .

    Article  Google Scholar 

  • Vos P., Hogers R., Bleeker M., Rijans M., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M., Zabeau M. and Lee T. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407–4414 .

    PubMed  CAS  Google Scholar 

  • Xu F. and Sun M. (2001). Comparative analysis of phylogenetic relationships of grain amaranths and their wild relatives (Amaranthus; Amaranthaceae) using internal transcribed spaceramplified fragment length polymorphismand double-primer fluorescent intersimple sequence repeat markers. Mol. Phylogenet. Evol. 21: 372–387 .

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Costea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costea, M., Brenner, D.M., Tardif, F.J. et al. Delimitation of Amaranthus cruentus L. and Amaranthus caudatus L. using micromorphology and AFLP analysis: an application in germplasm identification. Genet Resour Crop Evol 53, 1625–1633 (2006). https://doi.org/10.1007/s10722-005-2288-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-005-2288-3

Keywords

Navigation