Skip to main content

Advertisement

Log in

Influence of ligand presentation density on the molecular recognition of mannose-functionalised glyconanoparticles by bacterial lectin BC2L-A

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Polyvalent carbohydrate-protein interactions play a key role in bio- and pathological processes, including cell-cell communication and pathogen invasion. In order to study, control and manipulate these interactions gold nanoparticles have been employed as a 3D scaffold, presenting carbohydrate ligands in a multivalent fashion for use as high affinity binding partners and a model system for oligosaccharide presentation at biomacromolecular surfaces. In this study, the binding of a series of mannose-functionalised gold nanoparticles to the dimeric BC2L-A lectin from Burkholderia cenocepacia has been evaluated. BC2L-A is known to exhibit a high specificity for (oligo)mannosides. Due to the unique structure and binding nature of this lectin, it provides a useful tool to study (oligo)saccharides presented on multivalent scaffolds. Surface plasmon resonance and isothermal titration calorimetric assays were used to investigate the effect of ligand presentation density towards binding to the bacterial lectin. We show how a combination of structural complementarities between ligand presentation and lectin architecture and statistical re-binding effects are important for increasing the avidity of multivalent ligands for recognition by their protein receptors; further demonstrating the application of glyconanotechnology towards fundamental glycobiology research as well as a potential towards biomedical diagnostics and therapeutic treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lis, H., Sharon, N.: Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev. 98, 637–674 (1998)

    Article  PubMed  CAS  Google Scholar 

  2. Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E.: Essentials of Glycobiology, 2nd edn. Cold Spring Harbour, New York (2009)

    Google Scholar 

  3. Kramer, R.H., Karpen, J.W.: Spanning binding sites on allosteric proteins with polymer-linked ligand dimers. Nature 395, 710–713 (1998)

    Article  PubMed  CAS  Google Scholar 

  4. Gargano, J.M., Ngo, T., Kim, J.Y., Acheson, D.W., Lees, W.J.: Multivalent inhibition of AB(5) toxins. J. Am. Chem. Soc. 123, 12909–12910 (2001)

    Article  PubMed  CAS  Google Scholar 

  5. Mammen, M., Choi, S.K., Whitesides, G.M.: Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2755–2794 (1998)

    Article  CAS  Google Scholar 

  6. Reynolds, M., Perez, S.: Thermodynamics and chemical characterization of protein-carbohydrate interactions: the multivalency issue. C. R. Chim. 14, 74–95 (2011)

    Article  CAS  Google Scholar 

  7. Bernardi, A., Jimenez-Barbero, J., Casnati, A., De Castro, C., Darbre, T., Fieschi, F., Finne, J., Funken, H., Jaeger, K.E., Lahmann, M., Lindhorst, T.K., Marradi, M., Messner, P., Molinaro, A., Murphy, P.V., Nativi, C., Oscarson, S., Penadés, S., Peri, F., Pieters, R.J., Renaudet, O., Reymond, J.L., Richichi, B., Rojo, J., Sansone, F., Schaffer, C., Turnbull, W.B., Velasco-Torrijos, T., Vidal, S., Vincent, S., Wennekes, T., Zuilhof, H., Imberty, A.: Multivalent glycoconjugates as anti-pathogenic agents. Chem. Soc. Rev. (2013). doi:10.1039/C2CS35408J

  8. Marradi, M., Chiodo, F., Garcia, I., Penadés, S.: Glyconanoparticles as multifunctional and multimodal carbohydrate systems. Chem. Soc. Rev. (2013). doi:10.1039/C2CS35420A

  9. Tvaroska, I., Sihelnikova, L.: Step by step towards understanding gold glyconanoparticles as elements of the nanoworld. Chem. Pap. 61, 237–255 (2007)

    Article  Google Scholar 

  10. Marradi, M., Martin-Lomas, M., Penadés, S.: Glyconanoparticles polyvalent tools to study carbohydrate-based interactions. Adv. Carbohyd. Chem. Biochem. 64, 211–290 (2010)

    Article  CAS  Google Scholar 

  11. Boisselier, E., Astruc, D.: Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38, 1759–1782 (2009)

    Article  PubMed  CAS  Google Scholar 

  12. Otsuka, H., Akiyama, Y., Nagasaki, Y., Kataoka, K.: Quantitative and reversible lectin-induced association of gold nanoparticles modified with alpha-lactosyl-omega-mercapto-poly(ethylene glycol). J. Am. Chem. Soc. 123, 8226–8230 (2001)

    Article  PubMed  CAS  Google Scholar 

  13. Lin, C.C., Yeh, Y.C., Yang, C.Y., Chen, C.L., Chen, G.F., Chen, C.C., Wu, Y.C.: Selective binding of mannose-encapsulated gold nanoparticles to type 1 pili in Escherichia coli. J. Am. Chem. Soc. 124, 3508–3509 (2002)

    Article  PubMed  CAS  Google Scholar 

  14. Thygesen, M.B., Sauer, J., Jensen, K.J.: Chemoselective capture of glycans for analysis on gold nanoparticles: carbohydrate oxime tautomers provide functional recognition by proteins. Chem. Eur. J. 15, 1649–1660 (2009)

    Article  PubMed  CAS  Google Scholar 

  15. Halkes, K.M., de Souza, A.C., Maljaars, C.E.P., Gerwig, G.J., Kamerling, J.P.: A facile method for the preparation of gold glyconanoparticles from free oligosaccharides and their applicability in carbohydrate-protein interaction studies. Eur. J. Org. Chem. 3650–3659 (2005).

  16. Schofield, C.L., Mukhopadhyay, B., Hardy, S.M., McDonnell, M.B., Field, R.A., Russell, D.A.: Colorimetric detection of Ricinus communis Agglutinin 120 using optimally presented carbohydrate-stabilised gold nanoparticles. Analyst 133, 626–634 (2008)

    Article  PubMed  CAS  Google Scholar 

  17. Martinez-Avila, O., Hijazi, K., Marradi, M., Clavel, C., Campion, C., Kelly, C., Penadés, S.: Gold manno-glyconanoparticles: multivalent systems to block HIV-1 gp120 binding to the lectin DC-SIGN. Chem. Eur. J. 15, 9874–9888 (2009)

    Article  PubMed  CAS  Google Scholar 

  18. Martinez-Avila, O., Bedoya, L.M., Marradi, M., Clavel, C., Alcami, J., Penadés, S.: Multivalent manno-glyconanoparticles inhibit DC-SIGN-mediated HIV-1 trans-infection of human T cells. Chem Bio Chem 10, 1806–1809 (2009)

    Article  PubMed  CAS  Google Scholar 

  19. Marradi, M., Di Gianvincenzo, P., Enriquez-Navas, P.M., Martinez-Avila, O.M., Chiodo, F., Yuste, E., Angulo, J., Penadés, S.: Gold nanoparticles coated with oligomannosides of HIV-1 glycoprotein gp120 mimic the carbohydrate epitope of antibody 2G12. J. Mol. Biol. 410, 798–810 (2011)

    Article  PubMed  CAS  Google Scholar 

  20. Wang, X., Matei, E., Gronenborn, A.M., Ramstrom, O., Yan, M.: Direct measurement of glyconanoparticles and lectin interactions by isothermal titration calorimetry. Anal. Chem. 84, 4248–4252 (2012)

    Article  PubMed  CAS  Google Scholar 

  21. Reynolds, M., Marradi, M., Imberty, A., Penades, S., Perez, S.: Multivalent gold glycoclusters: high affinity molecular recognition by bacterial lectin PA-IL. Chem. Eur. J. 18, 4264–4273 (2012)

    Article  PubMed  CAS  Google Scholar 

  22. Govan, J.R., Deretic, V.: Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60, 539–574 (1996)

    PubMed  CAS  Google Scholar 

  23. Lyczak, J.B., Cannon, C.L., Pier, G.B.: Lung infections associated with cystic fibrosis. Clin. Microbiol. Rev. 15, 194–222 (2002)

    Article  PubMed  CAS  Google Scholar 

  24. Lameignere, E., Malinovska, L., Slavikova, M., Duchaud, E., Mitchell, E.P., Varrot, A., Sedo, O., Imberty, A., Wimmerova, M.: Structural basis for mannose recognition by a lectin from opportunistic bacteria Burkholderia cenocepacia. Biochem. J. 411, 307–318 (2008)

    Article  PubMed  CAS  Google Scholar 

  25. Sulak, O., Cioci, G., Delia, M., Lahmann, M., Varrot, A., Imberty, A., Wimmerova, M.: A TNF-like trimeric lectin domain from Burkholderia cenocepacia with specificity for fucosylated human histo-blood group antigens. Structure 18, 59–72 (2010)

    Article  PubMed  CAS  Google Scholar 

  26. Sulak, O., Cioci, G., Lameignere, E., Balloy, V., Round, A., Gutsche, I., Malinovska, L., Chignard, M., Kosma, P., Aubert, D.F., Marolda, C.L., Valvano, M.A., Wimmerova, M., Imberty, A.: Burkholderia cenocepacia BC2L-C is a super lectin with dual specificity and proinflammatory activity. PLoS Pathog 7, e1002238 (2011)

    Article  PubMed  CAS  Google Scholar 

  27. Lameignere, E., Shiao, T.C., Roy, R., Wimmerova, M., Dubreuil, F., Varrot, A., Imberty, A.: Structural basis of the affinity for oligomannosides and analogs displayed by BC2L-A, a Burkholderia cenocepacia soluble lectin. Glycobiology 20, 87–98 (2010)

    Article  PubMed  CAS  Google Scholar 

  28. Mandal, D.K., Kishore, N., Brewer, C.F.: Thermodynamics of lectin-carbohydrate interactions. Titration microcalorimetry measurements of the binding of N-linked carbohydrates and ovalbumin to concanavalin A. Biochemistry 33, 1149–1156 (1994)

    Article  PubMed  CAS  Google Scholar 

  29. Rieger, J., Stoffelbach, F., Cui, D., Imberty, A., Lameignere, E., Putaux, J.L., Jerome, R., Jerome, C., Auzely-Velty, R.: Mannosylated poly(ethylene oxide)-b-poly(epsilon-caprolactone) diblock copolymers: synthesis, characterization, and interaction with a bacterial lectin. Biomacromolecules 8, 2717–2725 (2007)

    Article  PubMed  CAS  Google Scholar 

  30. Rieger, J., Freichels, H., Imberty, A., Putaux, J.L., Delair, T., Jerome, C., Auzely-Velty, R.: Polyester nanoparticles presenting mannose residues: toward the development of new vaccine delivery systems combining biodegradability and targeting properties. Biomacromolecules 10, 651–657 (2009)

    Article  PubMed  CAS  Google Scholar 

  31. Sztucki, M., Narayanan, T.: Development of an ultra-small-angle X-ray scattering instrument for probing the microstructure and the dynamics of soft matter. J. Appl. Crystallogr. 40, S459–S462 (2007)

    Article  CAS  Google Scholar 

  32. Hostetler, M.J., Wingate, J.E., Zhong, C.-J., Harris, J.E., Vachet, R.W., Clark, M.R., Londono, J.D., Green, S.J., Stokes, J.J., Wignall, G.D., Glish, G.L., Porter, M.D., Evans, N.D., Murray, R.W.: Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14, 17–30 (1998)

    Article  CAS  Google Scholar 

  33. Jadzinsky, P.D., Calero, G., Ackerson, C.J., Bushnell, D.A., Kornberg, R.D.: Structure of a thiol monolayer-protected gold nanoparticle at 1.1 A resolution. Science 318, 430–433 (2007)

    Article  PubMed  CAS  Google Scholar 

  34. Huang, W., Bulusu, S., Pal, R., Zeng, X.C., Wang, L.S.: Structural transition of gold nanoclusters: from the golden cage to the golden pyramid. ACS Nano 3, 1225–1230 (2009).

    Google Scholar 

  35. Chien, Y.Y., Jan, M.D., Adak, A.K., Tzeng, H.C., Lin, Y.P., Chen, Y.J., Wang, K.T., Chen, C.T., Chen, C.C., Lin, C.C.: Globotriose-functionalized gold nanoparticles as multivalent probes for Shiga-like toxin. Chem Bio Chem 9, 1100–1109 (2008)

    Article  PubMed  CAS  Google Scholar 

  36. Kulkarni, A.A., Fuller, C., Korman, H., Weiss, A.A., Iyer, S.S.: Glycan encapsulated gold nanoparticles selectively inhibit shiga toxins 1 and 2. Bioconjugate Chem. 21, 1486–1493 (2010)

    Article  CAS  Google Scholar 

  37. Hill, H.D., Millstone, J.E., Banholzer, M.J., Mirkin, C.A.: The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano 3, 418–424 (2009)

    Article  PubMed  CAS  Google Scholar 

  38. Cederquist, K.B., Keating, C.D.: Curvature effects in DNA:Au nanoparticle conjugates. ACS Nano 3, 256–260 (2009)

    Article  PubMed  CAS  Google Scholar 

  39. Schreiber, F.: Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 65, 151–256 (2000)

    Article  CAS  Google Scholar 

  40. Rojo, J., Diaz, V., de la Fuente, J.M., Segura, I., Barrientos, A.G., Riese, H.H., Bernad, A., Penadés, S.: Gold glyconanoparticles as new tools in antiadhesive therapy. Chem Bio Chem 5, 291–297 (2004)

    Article  PubMed  CAS  Google Scholar 

  41. Sisu, C., Baron, A.J., Branderhorst, H.M., Connell, S.D., Weijers, C.A., de Vries, R., Hayes, E.D., Pukin, A.V., Pieters, R.J., Zuihof, H., Visser, G.M., Turnbull, W.B.: The influence of ligand valency on aggregation mechanisms for inhibiting bacterial lectins.Chem Bio Chem. 10, 329–337 (2009)

    Google Scholar 

  42. De, M., You, C.C., Srivasta, S., Rotello, V.M.: Biomimetic interactions of proteins with functionalized nanoparticles. J Am Chem Soc. 129, 10747–10753 (2009)

    Google Scholar 

  43. Nzula, S., Vandamme, P., Govan, J.R.: Influence of taxonomic status on the in vitro antimicrobial susceptibility of the Burkholderia cepacia complex. J. Antimicrob. Chemother. 50, 265–269 (2002)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the GlycoGold research training network, a part of the sixth research framework of the European Union, contract number MRTN-CT-2004-005645, for financial support. Financial support from the CNRS and ESRF are also acknowledged as well from the Labex Arcane (ANR-11-LABX-003) and the COST actions CM1102 and BM1003. We thank also the Spanish Ministry of Science and Innovation (MICINN, grant CTQ2011-27268) and the Department of Industry of the Basque Country (Etortek 2009). Dr Emilie Lameignere is greatly appreciated for help with lectin production. The SPR experiments were ran thanks to access to a Biacore T100 at the Plateforme Nanobio-Grenoble. SAXS experiments and analysis were carried out with the help of Drs Michael Sztucki and Emanuela Di Cola (ESRF, Grenoble). Professors Monica Palcic and Johannis Kamerling are also thanked for their helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Pérez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 685 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, M., Marradi, M., Imberty, A. et al. Influence of ligand presentation density on the molecular recognition of mannose-functionalised glyconanoparticles by bacterial lectin BC2L-A. Glycoconj J 30, 747–757 (2013). https://doi.org/10.1007/s10719-013-9478-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-013-9478-6

Keywords

Navigation