Skip to main content
Log in

Di-tert-butylsilylene-directed α-selective synthesis of p-nitrophenyl T-antigen analogues

Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Seven analogues of p-nitrophenyl T-antigen [Galβ(1→3)GalNAcα(1→O)PNP] have been synthesized as potential substrates for elucidation of the substrate specificity of endo-α-N-acetylgalactosaminidase. These compounds, which are commercially unavailable, include: GlcNAcβ(1→3){GlcNAcβ(1→6)}GalNAcα(1→O)PNP [core 4 type], GalNAcα(1→3)GalNAcα(1→O)PNP [core 5 type], GlcNAcβ(1→6)GalNAcα(1→O)PNP [core 6 type], GalNAcα(1→6)GalNAcα(1→O)PNP [core 7 type], Galα(1→3)GalNAcα(1→O)PNP [core 8 type], Glcβ(1→3)GalNAcα(1→O)PNP and GalNAcβ(1→3)GalNAcα(1→O)PNP. The assembly of these synthetic probes was accomplished efficiently, based on di-tert-butylsilylene(DTBS)-directed α-galactosylation as a key reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5

Similar content being viewed by others

References

  1. Tanaka, Y., Takahashi, Y., Shinose, M., Omura, S., Karakasa, I., Iwase, H., Hotta, K.: Screening and fermentation of endo-α-N-acetylgalactosaminidase S, a mucin-hydrolyzing enzyme from Streptomyces acting on the GalNAc-O-Ser (Thr) linkage. J. Ferment. Bioeng. 85, 381–387 (1998) doi:10.1016/S0922-338X(98)80081-0

    Article  CAS  Google Scholar 

  2. Ashida, H., Yamamoto, K., Murata, T., Usui, T., Kumagai, H.: Characterization of endo-α-N-acetylgalactosaminidase from Bacillus sp. and syntheses of neo-oligosaccharides using its transglycosylation activity. Arch. Biochem. Biophys. 373, 394–400 (2000) doi:10.1006/abbi.1999.1565

    Article  PubMed  CAS  Google Scholar 

  3. Fujita, K., Oura, F., Nagamine, N., Katayama, T., Hiratake, J., Sakata, K., et al.: Identification and molecular cloning of a novel glycoside hydrolase family of core 1 type O-glycan-specific endo-α-N-acetylgalactosaminidase from Bifidobacterium longum. J. Biol. Chem. 280, 37415–37422 (2005) doi:10.1074/jbc.M506874200

    Article  PubMed  CAS  Google Scholar 

  4. Benno, Y., Mitsuoka, T.: Impact of Bifidobacterium longum on human fecal microflora. Microbiol. Immunol. 36, 683–694 (1992)

    PubMed  CAS  Google Scholar 

  5. Beutler, E., Kuhl, W.: Purification and properties of human α-galactosidases. J. Biol. Chem. 247, 7195–7200 (1972)

    PubMed  CAS  Google Scholar 

  6. Casciola-Rosen, L.A.F., Hubbard, A.L.: Hydrolases in intracellular compartments of rat liver cells. J. Biol. Chem. 266, 4341–4347 (1991)

    PubMed  CAS  Google Scholar 

  7. Imamura, A., Ando, H., Korogi, S., Tanabe, G., Muraoka, O., Ishida, H., et al.: Di-tert-butylsilylene (DTBS) group-directed α-selective galactosylation unaffected by C-2 participating functionalities. Tetrahedron Lett. 44, 6725–6728 (2003) doi:10.1016/S0040-4039(03)01647-2

    Article  CAS  Google Scholar 

  8. Imamura, A., Kimura, A., Ando, H., Ishida, H., Kiso, M.: Extended applications of di-tert-butylsilylene-directed α-predominant galactosylation compatible with C2-participating groups toward the assembly of various glycosides. Chem. Eur. J. 12, 8862–8870 (2006) doi:10.1002/chem.200600832

    Article  CAS  Google Scholar 

  9. Imamura, A., Ando, H., Ishida, H., Kiso, M.: DTBS(di-tert-butylsilylene)-directed α-galactosylation for the synthesis of biologically relevant glycans. Curr. Org. Chem. 12, 675–689 (2008) doi:10.2174/138527208784577358

    Article  CAS  Google Scholar 

  10. Kunz, H., Birnbach, S., Wernig, P.: Synthesis of glycopeptides with the Tn and T antigen structures, and their coupling to bovine serum albumin. Carbohydr. Res. 202, 207–223 (1990) doi:10.1016/0008-6215(90)84081-5

    Article  PubMed  CAS  Google Scholar 

  11. Geiger, J., Reddy, B.G., Winterfeld, G.A., Weber, R., Przybylski, M., Schmidt, R.R.: Glycal glycosylation and 2-nitroglycal concatenation, a powerful combination for mucin core structure synthesis. J. Org. Chem. 72, 4367–4377 (2007) doi:10.1021/jo061670b

    Article  PubMed  CAS  Google Scholar 

  12. Gambert, U., Thiem, J.: Chemoenzymatic synthesis of the Thomsen-Friedenreich antigen determinant. Carbohydr. Res. 299, 85–89 (1997) doi:10.1016/S0008-6215(96)00324-2

    Article  PubMed  CAS  Google Scholar 

  13. Bongat, A.F.G., Demchenko, A.V.: Recent trends in the synthesis of O-glycosides of 2-amino-2-deoxysugars. Carbohydr. Res. 342, 374–406 (2007) doi:10.1016/j.carres.2006.10.021

    Article  PubMed  CAS  Google Scholar 

  14. Greene, T.W., Wuts, P.G.M. (eds.): Protective Groups in Organic Chemistry 4th ed., Wiley, New York (2007)

  15. Matsumoto, T., Katsuki, M., Suzuki, K.: Rapid O-glycosylation of phenols with glycosyl fluoride by using the combinational activator, Cp2HfCl2–AgClO4. Chem. Lett. 437–440 (1989) doi:10.1246/cl.1989.437

  16. Yamaguchi, M., Horiguchi, A., Fukuda, A., Minami, T.: Novel synthesis of aryl 2,3,4,6-tetra-O-acetyl-d-glucopyranodides. J. Chem. Soc., Perkin Trans. 1, 1079–1082 (1990) doi:10.1039/p19900001079

    Article  Google Scholar 

  17. Lee, Y.-S., Rho, E.-S., Min, Y.-K., Kim, B.-T., Kim, K.-H.: Practical β-stereoselective O-glycosylation of phenols with penta-O-acetyl-β-d-glucopyranose. J. Carbohydr. Chem. 20, 503–506 (2001) doi:10.1081/CAR-100106933

    Article  CAS  Google Scholar 

  18. Furusawa, K.: Removal of cyclic di-t-butylsilanediyl protecting groups using tributylamine hydrofluoride (TBAHF) reagent. Chem. Lett. 509–510 (1989) doi:10.1246/cl.1989.509

  19. Veeneman, G.H., van Leeuwen, S.H., van Boom, J.H.: Iodonium ion promoted reactions at the anomeric centre. II An efficient thioglycoside mediated approach toward the formation of 1,2-trans linked glycosides and glycosidic esters. Tetrahedron Lett. 31, 1331–1334 (1990) doi:10.1016/S0040-4039(00)88799-7

    Article  CAS  Google Scholar 

  20. Schmidt, R.R.: New methods for the synthesis of glycosides and oligosaccharides—Are there alternatives to the Koenigs–Knorr method? Angew. Chem. Int. Ed. Engl. 25, 212–235 (1986) doi:10.1002/anie.198602121

    Article  Google Scholar 

  21. Ogawa, T., Nakabayashi, S., Sasajima, K.: Synthesis of phenyl 6-O-acyl-3-O-benzyl-2-deoxy-2-phthalimido-1-thio-β-d-glucopyranoside. Carbohydr. Res. 95, 308–312 (1981) doi:10.1016/S0008-6215(00)85587-1

    Article  CAS  Google Scholar 

  22. Kanie, O., Ito, Y., Ogawa, T.: Orthogonal glycosylation strategy in synthesis of extended blood group B determinant. Tetrahedron Lett. 37, 4551–4554 (1996) doi:10.1016/0040-4039(96)00901-X

    Article  CAS  Google Scholar 

  23. Verduyn, R., Douwes, M., van der Klein, P.A.M., Mösinger, E.M., van der Marel, G.A., van Boom, J.H.: Synthesis of a methyl heptaglucoside: Analogue of the phytoalexin elicitor from phytophtora megasperma. Tetrahedron 49, 7301–7316 (1993) doi:10.1016/S0040-4020(01)87208-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan (Grant-in-Aid for Scientific Research to M. K., No. 17101007), and CREST of JST (Japan Science and Technology Agency). We thank Drs. K. Yamamoto and H. Ashida of Kyoto University, Kyoto, Japan, for meaningful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akihiro Imamura or Makoto Kiso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, T., Imamura, A., Ando, H. et al. Di-tert-butylsilylene-directed α-selective synthesis of p-nitrophenyl T-antigen analogues. Glycoconj J 26, 83–98 (2009). https://doi.org/10.1007/s10719-008-9168-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9168-y

Keywords

Navigation