Skip to main content

Advertisement

Log in

Preferential reduction of the α-2-6-sialylation from cell surface N-glycans of human diploid fibroblastic cells by in vitro aging

  • Original Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Human diploid fibroblastic cell line, TIG-3, has a finite life span of about 80 population doubling levels (PDL), and is used for in vitro aging studies. Young cells (PDL 23) grew to higher cell densities at a higher growth rate than aged cells (PDL 77). When the electrophoretic mobility of cells was determined, the negative surface charge of the aged cells decreased significantly when compared to that of young cells. Lectin blot analysis of membrane glycoproteins showed that the α-2-6-sialylation but not the α-2-3-sialylation of N-glycans decreases markedly in the aged cells when compared to the young cells. In support of this observation, the cDNA microarray assay and reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that the gene expression of the α-2,6-sialyltransferase I (ST6Gal I), which transfers sialic acid to galactose residues of N-glycans, decreases in the aged cells. These results indicate that the concordant decrease of the α-2,6-sialylation of N-glycans with the ST6Gal I gene expression is induced in TIG-3 cells by in vitro aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CBB:

Coomassie Brilliant Blue

Con A:

concanavalin A

DT:

doubling time

EtBr:

ethidium bromide

β-1,4-GalT:

β-1,4-galactosyltransferase

GlcNAcT II:

UDP-GlcNAc

Manα:

1,6-Man β-1,2-N-acetyl-glucosaminyltransferase

G3PDH:

glyceraldehyde 3-phosphate dehydrogenase

FCS:

fetal calf serum

LCA:

Lens culinaris agglutinin

L-PHA:

leuko-agglutinating phytohemagglutinin

MAA:

Maackia amurensis agglutinin

MES:

2-(N-morpholino)ethansulfonic acid

PBS:

phosphate-buffered saline

PDL:

population doubling levels

PVL:

Psathyrella velutina lectin

RCA-I:

Ricinus communis agglutinin-I

RT-PCR:

reverse transcription polymerase chain reaction

SNA:

Sambucus nigra agglutinin

ST3Gal III:

β-galactoside α-2,3-sialyltransferase III

ST3Gal IV:

β-galactoside α-2,3-sialytransferase IV

ST6Gal I:

β-galactoside α-2,6-sialyltransferase I

References

  1. Hayflick, L., Moorhead, P.S.: The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961)

    Article  Google Scholar 

  2. Hayflick, L.: The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–36 (1965)

    Article  PubMed  CAS  Google Scholar 

  3. Stanulis-Praeger, B.M.: Cellular senescence revisited: a review. Mech. Ageing Dev. 38, 1–48 (1987)

    Article  PubMed  CAS  Google Scholar 

  4. Blackburn, E.H.: Structure and function of telomeres. Nature 350, 569–73 (1991)

    Article  PubMed  CAS  Google Scholar 

  5. Greider, C.W.: Telomerase length regulation, Annu. Rev. Biochem. 65, 337–65 (1996)

    Article  PubMed  CAS  Google Scholar 

  6. Kawado, T., Hayashi, O., Sato, T., Ito, H., Hayakawa, S., Takayama, E., Furukawa, K.: Rapid cell senescence-associated changes in galactosylation of N-linked oligosaccharides in human lung adenocarcinoma A549 cells. Arch. Biochem. Biophys. 426, 306–13 (2004)

    Article  PubMed  CAS  Google Scholar 

  7. Katakura, Y., Nakata, E., Miura, T., Shirahata, S.: Transforming growth factor β triggers two independent-senescence programs in cancer cells. Biochem. Biophys. Res. Commun. 255, 110–15 (1999)

    Article  PubMed  CAS  Google Scholar 

  8. Kuwahara, I., Ikebuchi, K., Hamada, H., Niitsu, Y., Miyazawa, K., Ohyashiki, K., Fujisawa, H., Furukawa, K.: Changes in N-glycosylation of human stromal cells by telomerase expression. Biochem. Biophys. Res. Commun. 301, 293–97 (2003)

    Article  PubMed  CAS  Google Scholar 

  9. Ioffe, E., Stanley, P.: Mice lacking N-acetylglucosaminyltransferase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates. Proc. Natl. Acad. Sci. USA. 91, 728–32 (1994)

    Article  PubMed  CAS  Google Scholar 

  10. Metzler, M., Gertz, A., Sarkar, M., Schachter, H., Schrader, J.W., Marth, J.D.: Complex asparagine-linked oligosaccharides are required for morphogenic events during post-implantation development. EMBO J. 13, 2056–65 (1994)

    PubMed  CAS  Google Scholar 

  11. Asano, M., Furukawa, K., Kiso, M., Matsumoto, S., Umesaki, Y., Kochibe, N., Iwakura, Y.: Growth retardation and early death of β-1,4-galactosyltransferase-knockout mice with augmented proliferation and abnormal differentiation of epithelial cells. EMBO J. 16, 1850–57 (1997)

    Article  PubMed  CAS  Google Scholar 

  12. Lu, Q., Hasty, P., Shur, B.D.: Targeted mutation in β1,4-galactosyltransferase leads to pituitary insufficiency and neonatal lethality. Dev. Biol. 181, 257–67 (1997)

    Article  PubMed  CAS  Google Scholar 

  13. Furukawa, K., Takamiya, K., Okada, M., Inoue, M., Fukumoto, S., Furukawa, K.: Novel functions of complex carbohydrates elucidated by the mutant mice of glycosyltransferase genes. Biochim. Biophy. Acta. 1525, 1–12 (2001)

    CAS  Google Scholar 

  14. Sato, T., Furukawa, K., Greenwalt, D.E., Kobata, A.: Most bovine milk fat globule membrane glycoproteins contain asparagine-linked sugar chains with GalNAcβ1→4GlcNAc groups. J. Biochem. (Tokyo) 117, 890–900 (1993)

    Google Scholar 

  15. Yamamoto, K., Yamamoto, M., Ooka, H.: Changes in negative surface charge of human diploid fibroblasts, TIG-1, during in vitro aging. Mech. Ageing Dev. 42, 183–95 (1988)

    Article  PubMed  CAS  Google Scholar 

  16. Sato, T., Shirane, K., Kido, M., Furukawa, K.: Correlated gene expression between β-1,4-galactosyltransferase V and N-acetylglucosaminyltransferase V in human cancer cell lines. Biochem. Biophys. Res. Commun. 276, 1019–23 (2000)

    Article  PubMed  CAS  Google Scholar 

  17. Ishibashi, Y., Kobayashi, F., Idesawa, A., Taniguchi, A., Matsuzawa, S.: Effects of carbocisteine on altered activities of glycosidases and glycosyltransferases and expression of Muc5ac in SO2-exposed rats. Eur. J. Pharmacol. 487, 7–15 (2004)

    Article  PubMed  CAS  Google Scholar 

  18. Epstein, C.J., Martin, G.M., Schultz, A.L., Motulsky, A.G.: Werner’s syndrome: A review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine 45, 177–221 (1966)

    PubMed  CAS  Google Scholar 

  19. Ogata, S., Muramatsu, T., Kobata, A.: Fractionation of glycopeptides by affinity column chromatography on concanavalin A-Sepharose. J. Biochem. (Tokyo) 78, 687–96 (1975)

    CAS  Google Scholar 

  20. Baenziger, J.U., Fiete, D.: Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides. J. Biol. Chem. 254, 9795–99 (1979)

    PubMed  CAS  Google Scholar 

  21. Merkle, R.K., Cummings, R.D.: Lectin affinity chromatography of glycoproteins. Methods Enzymol. 138, 232–59 (1987)

    Article  PubMed  CAS  Google Scholar 

  22. Kornfeld, S., Reitman, M.L., Kornfeld, R.: The carbohydrate-binding specificity of pea and lentil lectins. Fucose is an important determinant. J. Biol. Chem. 256, 6633–40 (1981)

    PubMed  CAS  Google Scholar 

  23. Endo, T., Ohbayashi, H., Kanazawa, K., Kochibe, N., Kobata, A.: Carbohydrate binding specificity of immobilized Psathyrella velutina lectin. J. Biol. Chem. 267, 707–13 (1992)

    PubMed  CAS  Google Scholar 

  24. Ueda, H., Matsumoto, H., Takahashi, N., Ogawa, H.: Psathyrella velutina mushroom lectin exhibits high affinity toward sialoglycoproteins possessing terminal N-acetylneuraminic acid Α2,3-linked to penultimate galactose residues of trisialyl N-glycans. Comparison with other sialic acid-specific lectins. J. Biol. Chem. 277, 24916–25 (2002)

    Article  PubMed  CAS  Google Scholar 

  25. Wang, W.C., Cummings, R.D.: The immobilized leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid-linked Α-2,3 to penultimate galactose residues. J. Biol. Chem. 263, 4576–85 (1988)

    PubMed  CAS  Google Scholar 

  26. Shibuya, N., Goldstein, I.J., Broekaert, W.F., Nsimba-Lubaki, M., Peeters, B., Peumans, W.J.: The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(Α2–6)Gal/GalNAc sequence. J. Biol. Chem. 262, 1596–601 (1987)

    PubMed  CAS  Google Scholar 

  27. Kelleher, D.J., Kreibich, G., Gilmore, R.: Oligosaccharyltransferase activity is associated with a protein complex composed of ribophorins I and II and a 48 kd protein. Cell 69, 55–65 (1992)

    Article  PubMed  CAS  Google Scholar 

  28. Aasheim, H.C., Aas-Eng, D.A., Deggerdal, A., Blomhoff, H.K., Funderud, S., Smeland, E.B.: Cell-specific expression of human β-galactoside Α-2,6-sialyltransferase transcripts differing in the 5′-untranslated region. Eur. J. Biochem. 213, 467–75 (1993)

    Article  PubMed  CAS  Google Scholar 

  29. Svensson, E.C., Conley, P.B., Paulson, J.C.: Regulated expression of Α-2,6-sialyltransferase by the liver-enriched transcription factors HNF-1, DBP, and LAP. J. Biol. Chem. 267, 3466–72 (1992)

    PubMed  CAS  Google Scholar 

  30. Aas-Eng, D.A., Asheim, H.C., Deggerdal, A., Smeland, E., Funderud, S.: Characterization of a promoter region supporting transcription of a novel human β-galactoside Α-2,6-sialyltransferase transcript in HepG2 cells. Biochim. Biophys. Acta. 1261, 166–69 (1995)

    PubMed  Google Scholar 

  31. Lo, N.W., Lau, J.T.: Transcription of the β-galactoside Α-2,6-sialyltransferase gene in B lymphocytes is directed by a separate and distinct promoter. Glycobiology 6, 271–79 (1996)

    PubMed  CAS  Google Scholar 

  32. Wang, X., Vertino, A., Eddy, R.L., Byers, M.G., Jani-Sait, S.N., Shows, T.B., Lau, J.T.: Chromosome mapping and organization of the human β-galactoside Α-2,6-sialyltransferase gene. Differential and cell-type specific usage of upstream exon sequences in B-lymphoblastoid cells. J. Biol. Chem. 268, 4355–61 (1993)

    PubMed  CAS  Google Scholar 

  33. Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O.: A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA. 92, 9363–67 (1995)

    Article  PubMed  CAS  Google Scholar 

  34. Parekh, R., Roitt, I., Isenberg, D., Dwek, R., Rademacher, T.: Age-related galactosylation of the N-linked oligosaccharides of human serum IgG. J. Exp. Med. 167, 1731–6 (1988)

    Article  PubMed  CAS  Google Scholar 

  35. Blondal, J.A., Dick, J.E., Wright, J.A.: Membrane glycoprotein changes during the senescence of normal human diploid fibroblasts in culture. Mech. Ageing Dev. 30, 273–83 (1985)

    Article  PubMed  CAS  Google Scholar 

  36. Yamada, E., Tsukamoto, Y., Sasaki, R., Yagyu, K., Takahashi, N.: Structural changes of immunoglobulin G oligosaccharides with age in healthy human serum. Glycoconj. J. 14, 401–5 (1997)

    Article  PubMed  CAS  Google Scholar 

  37. Hegner, D., Platt, D., Heckers, H., Schloeder, U., Breuninger, V.: Age-dependent physiochemical and biochemical studies of human red cell membranes. Mech. Ageing Dev. 10, 117–30 (1979)

    Article  PubMed  CAS  Google Scholar 

  38. Ohsawa, T., Nagai, Y.: Ganglioside changes during cell aging in human diploid fibroblast TIG-1. Exp. Gerontol. 17, 287–93 (1982)

    Article  PubMed  CAS  Google Scholar 

  39. Schachtschabel, D.O., Wever, J.: Age-related decline in the synthesis of glycosaminoglycans by cultured human fibroblasts (WI-38). Mech. Ageing Dev. 8, 257–64 (1978)

    Article  PubMed  CAS  Google Scholar 

  40. Matuoka, K., Mitsui, Y.: Changes in cell-surface glycosaminoglycans in human diploid fibroblasts during in vitro aging. Mech. Ageing Dev. 15, 153–63 (1981)

    Article  PubMed  CAS  Google Scholar 

  41. Aminoff, D., Bruegge, W.F., Bell, W.C., Sarpolis, K., Williams, R.: Role of sialic acid in survival of erythrocytes in the circulation: interaction of neuraminidase-treated and untreated erythrocytes with spleen and liver at the cellular level, Proc. Natl. Acad. Sci. USA. 74, 1521–24 (1977)

    Article  PubMed  CAS  Google Scholar 

  42. Brunngraber, E.G., Webster, J.C.: Changes in glycoprotein carbohydrate content in the aging human brain. Neurochem. Res. 11, 579–588 (1986)

    Article  PubMed  CAS  Google Scholar 

  43. Aminoff, D., Bell, W.C., VorderBruegge, W.G.: Cell surface carbohydrate recognition and the viability of erythrocytes in circulation. Prog. Clin. Biol. Res. 23, 569–81 (1978)

    PubMed  CAS  Google Scholar 

  44. Lutz, H.U., Fehr, J.: Total sialic acid content of glycophorins during senescence of human red blood cells. J. Biol. Chem. 254, 11177–80 (1979)

    PubMed  CAS  Google Scholar 

  45. Rutishauser, U., Watanabe, M., Silver, J., Troy, F.A., Vimr, E.R.: Specific alteration of NCAM-mediated cell adhesion by an endoneuraminidase. J. Cell Biol. 101, 1842–49 (1985)

    Article  PubMed  CAS  Google Scholar 

  46. Weisgerber, C., Husmann, M., Frosch, M., Rheinheimer, C., Peuckert, W., Gorgen, I., Bitter-Suermann, D.: Embryonic neural cell adhesion molecule in cerebrospinal fluid of younger children: age-dependent decrease during the first year. J. Neurochem. 55, 2063–71 (1990)

    PubMed  CAS  Google Scholar 

  47. Kudo, M., Kitajima, K., Inoue, S., Shiokawa, K., Morris, H.R., Dell, A., Inoue, Y.: Characterization of the major core structures of the Α2→8-linked polysialic acid-containing glycan chains present in neural cell adhesion molecule in embryonic chick brains. J. Biol. Chem. 271, 32667–77 (1996)

    Article  PubMed  CAS  Google Scholar 

  48. Takashima, S., Tsuji, S., Tsujimoto, M.: Characterization of the second type of human β-galactoside Α-2,6-sialyltransferase (ST6Gal II), which sialylates Galβ1,4GlcNAc structures on oligosaccharides preferentially. Genomic analysis of human sialyltransferase genes. J. Biol. Chem. 277, 45719–28 (2002)

    Article  PubMed  CAS  Google Scholar 

  49. Itzhaki, O., Skutelsky, E., Kaptzan, T., Sinai, J., Michowitz, M., Huszar, M., Leibovici, J.: Ageing-apoptosis relation in murine spleen. Mech. Ageing Dev. 124, 999–1012 (2003)

    Article  PubMed  CAS  Google Scholar 

  50. Higashi, N., Fujioka, K., Denda-Nagai, K., Hashimoto, S., Nagai, S., Sato, T., Fujita, Y., Morikawa, A., Tsuiji, M., Miyata-Takeuchi, M., Sano, Y., Suzuki, N., Yamamoto, K., Matsushima, K., Irimura, T.: The macrophage C-type lectin specific for galactose/N-acetylgalactosamine is an endocytic receptor expressed on monocyte-derived immature dendritic cells. J. Biol. Chem. 277, 20686–93 (2002)

    Article  PubMed  CAS  Google Scholar 

  51. Ezekowitz, R.A., Sastry, K., Bailly, P., Warner, A.: Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J. Exp. Med. 172, 1785–94 (1990)

    Article  PubMed  CAS  Google Scholar 

  52. Kelm, S., Schauer, R., Manuguerra, J.C., Gross, H.J., Crocker, P.R.: Modifications of cell surface sialic acids modulate cell adhesion mediated by sialoadhesin and CD22. Glycoconj. J. 11, 576–85 (1994)

    Article  PubMed  CAS  Google Scholar 

  53. Seales, E.C., Jurado, G.A., Singhal, A., Bellis, S.L.: Ras oncogene directs expression of a differentially sialylated, functionally altered β1 integrin. Oncogene 22, 7137–45 (2003)

    Article  PubMed  CAS  Google Scholar 

  54. Abe, Y., Smith, C.W., Katkin, J.P., Thurmon, L.M., Xu, X., Mendoza, L.H., Ballantyne, C.M.: Endothelial Α2,6-linked sialic acid inhibits VCAM-1-dependent adhesion under flow conditions. J. Immunol. 163, 2867–76 (1999)

    PubMed  CAS  Google Scholar 

  55. Dalziel, M., Dall’Olio, F., Mungul, A., Piller, V., Piller, F.: Ras oncogene induces β-galactoside Α2,6-sialyltransferase (ST6Gal I) via a RalGEF-mediated signal to its housekeeping promoter. Eur. J. Biochem. 271, 3623–34 (2004)

    Article  PubMed  CAS  Google Scholar 

  56. Quentin, E., Gladen, A., Roden, L., Kresse, H.: A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome. Proc. Natl. Acad. Sci. USA. 87, 1342–46 (1990)

    Article  PubMed  CAS  Google Scholar 

  57. Okajima, T., Fukumoto, S., Furukawa, K., Urano, T.: Molecular basis for the progeroid variant of Ehlers-Danlos syndrome. Identification and characterization of two mutations in galactosyltransferase I gene. J. Biol. Chem. 274, 28841–44 (1999)

    Article  PubMed  CAS  Google Scholar 

  58. Almeida, R., Levery, S.B., Mandel, U., Kresse, H., Schwientek, T., Bennett, E.P., Clausen, H.: Cloning and expression of a proteoglycan UDP-galactose:β-xylose β1,4-galactosyltransferase I. A seventh member of the human β1,4-galactosyltransferase gene family. J. Biol. Chem. 274, 26165–71 (1999)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Furukawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tadokoro, T., Yamamoto, K., Kuwahara, I. et al. Preferential reduction of the α-2-6-sialylation from cell surface N-glycans of human diploid fibroblastic cells by in vitro aging. Glycoconj J 23, 443–452 (2006). https://doi.org/10.1007/s10719-006-7152-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-006-7152-y

Keywords

Navigation