Skip to main content
Log in

Background-independence

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Intuitively speaking, a classical field theory is background-independent if the structure required to make sense of its equations is itself subject to dynamical evolution, rather than being imposed ab initio. The aim of this paper is to provide an explication of this intuitive notion. Background-independence is not a not formal property of theories: the question whether a theory is background-independent depends upon how the theory is interpreted. Under the approach proposed here, a theory is fully background-independent relative to an interpretation if each physical possibility corresponds to a distinct spacetime geometry; and it falls short of full background-independence to the extent that this condition fails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson J.: Relativity principles and the role of coordinates in physics. In: Chiu, H.Y., Hoffman, W. (eds) Gravitation and Relativity, pp. 175–194. W.A. Benjamin Inc, New York (1964)

    Google Scholar 

  2. Anderson J.: Principles of Relativity Physics. Academic Press, New York (1967)

    Google Scholar 

  3. Andersson L.: Momenta and reduction in general relativity. J. Geom. Phys. 4, 289–314 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Anninos, D., Ng, G.S., Strominger, A.: Asymptotic symmetries and charges in de Sitter space. ArXiv: 1009.4730v1 [gr-qc] (2010)

  5. Ashtekar A., Magnon A.: Asymptotically anti-de Sitter space-times. Cl. Quantum Gravit. 1, L39–L44 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  6. Belot G.: An elementary notion of gauge equivalence. Gen. Relativ. Gravit. 40, 199–215 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Carlip S.: Quantum Gravity in 2 + 1 Dimensions. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  8. Chruściel P., Isenberg J.: Nonisometric vacuum extensions of vacuum maximal globally hyperbolic spacetimes. Phys. Rev. D 48, 1616–1628 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  9. Ciarlet P., Gratie L., Mardare C.: Intrinsic methods in elasticity: a mathematical survey. Discret. Contin. Dyn. Syst. 23, 133–164 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Crnković v., Witten E.: Covariant description of canonical formalism in geometrical theories. In: Hawking, S., Israel, W. (eds) Three Hundred Years of Gravitation, pp. 676–684. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  11. Deligne P., Freed D.: Classical field theory. In: Deligne, P., Etingof, P., Freed, D., Jeffrey, L., Kazhdan, D., Morgan, J., Morrison, D., Witten, E. (eds) Quantum Fields and Strings: A Course for Mathematicians, vol. 1, pp. 137–225. American Mathematical Society, Providence (1999)

    Google Scholar 

  12. Diacu F.: Singularities of the N-Body Problem. Les Publications CRM, Montréal (1992)

    Google Scholar 

  13. Dirac P.A.M.: Lectures on Quantum Mechanics. Dover, New York (2001)

    Google Scholar 

  14. Earman J.: Covariance, invariance, and the equivalence of frames. Found. Phys. 4, 267–289 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  15. Friedman M.: Relativity principles, absolute objects, and symmetry groups. In: Suppes, P. (eds) Space, Time, and Geometry, pp. 296–320. Reidel, Dordrecht (1973)

    Chapter  Google Scholar 

  16. Friedman M.: Foundations of Spacetime Theories. Princeton University Press, Princeton (1983)

    Google Scholar 

  17. Geroch R.: Electromagnetism as an aspect of geometry? Already unified field theory—the null case. Annal. Phys. 36, 147–187 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  18. Geroch R.: Asymptotic stucture of space-time. In: Esposito, F.P., Witten, L. (eds) Asymptotic Stucture of Space-Time, pp. 1–105. Plenum Press, New York (1977)

    Chapter  Google Scholar 

  19. Giulini D.: Some remarks on the notions of general covariance and background independence. In: Seiler, E., Stamatescu, I.O. (eds) Approaches to Fundamental Physics: An Assessment of Current Theoretical Ideas, pp. 105–120. Springer, Berlin (2007)

    Google Scholar 

  20. Gotay, M., Castrillón López, M.: Covariantizing classical field theories (2010). ArXiv:1008.3170v1 [math-ph]

  21. Gotay M., Nester J., Hinds G.: Presymplectic manifolds and the Dirac–Bergmann theory of constraints. J. Math. Phys. 19, 2388–2399 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Gryb S.: A definition of background independence. Cl. Quantum Gravit. 27, 215018 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  23. Hawking S., Ellis G.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  24. Henneaux M., Teitelboim C.: Quantization of Gauge Systems. Princeton University Press, Princeton (1992)

    MATH  Google Scholar 

  25. Janssen, M.: No success like failure …: Einstein’s quest for general relativity, 1907–1920 (2008). Phil-Sci archive: 00004377

  26. Janssen, M., Schulmann, R., Illy, J., Lehner, C., Kormos-Buchwald, D. (eds): The Collected Papers of Albert Einstein, vol. 7. The Berlin Years: Writings, 1918–1921. Princeton University Press, Princeton (2002)

    Google Scholar 

  27. Kolář I., Michor P., Slovák J.: Natural Operations in Differential Geometry. Springer, Berlin (1993)

    MATH  Google Scholar 

  28. Lee J., Wald R.: Local symmetries and constraints. J. Math. Phys. 31, 725–743 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Louko J., Marolf D.: The solution space of 2 + 1 gravity on \({\mathbb{R} \times {T} \sp 2}\) in Witten’s connection formulation. Cl. Quantum Gravit. 11, 311–330 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Marsden J., Hughes T.: Mathematical Foundations of Elasticity. Dover, New York (1994)

    Google Scholar 

  31. Meusburger C.: Cosmological measurements, time, and observables in (2 + 1)-dimensional gravity. Cl. Quantum Gravit. 26, 055006 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  32. Norton J.: Einstein, Nordström, and the early demise of Lorentz-covariant, scalar theories of gravity. Arch. Hist. Exact Sci. 45, 17–94 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Norton J.: General covariance and the foundations of general relativity: eight decades of dispute. Rep. Prog. Phys. 56, 791–858 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  34. Olver P.: Applications of Lie Groups to Differential Equations, 2nd edn. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  35. Pitts B.: Absolute objects and counterexamples: Jones-Geroch dust, Toretti constant curvature, tetrad-spinor, and scalar density. Stud. Hist. Philos. Mod. Phys. 37, 347–371 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ravndal, F.: Scalar gravitation and extra dimensions. In: Cranström, C., Montonen, C. (eds.) Proceedings of the Gunnar Nordström Symposium of Theoretical Physics, pp. 151–164. The Finnish Society of Sciences and Letters, Helsinki (2004)

  37. Rovelli C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  38. Sachs R., Wu H.H.: General Relativity for Mathematicians. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  39. Sklar L.: Philosophy and Spacetime Physics. University of California Press, Berkeley (1985)

    Google Scholar 

  40. Smolin L.: The present moment in quantum cosmology: Challenges to the argument for the elimination of time. In: Durie, R. (eds) Time and the Instant: Essays in the Physics and Philosophy of Time, pp. 112–143. Clinamen, Manchester (2001)

    Google Scholar 

  41. Smolin L.: The case for background independence. In: Rickles, D., French, S., Saatsi, J. (eds) The Structural Foundations of Quantum Gravity, pp. 196–239. Oxford University Press, Oxford (2006)

    Chapter  Google Scholar 

  42. Sorkin R.: An example relevant to the Kretschmann–Einstein debate. Mod. Phys. Lett. A 17, 695–700 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Straumann, N.: Reflections on gravity (2000). ArXiv:astro-ph/0006423v1

  44. Torre C.: Covariant phase space formulation of parameterized field theories. J. Math. Phys. 33, 3802–3811 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Wolf J.: Spaces of Constant Curvature, 5th edn. Publish or Perish, Wilmington (1984)

    Google Scholar 

  46. Zuckerman G.: Action principles and global geometry. In: Yau, S.T. (eds) Mathematical Aspects of String Theory, pp. 259–284. World Scientific, Singapore (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon Belot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belot, G. Background-independence. Gen Relativ Gravit 43, 2865–2884 (2011). https://doi.org/10.1007/s10714-011-1210-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-011-1210-x

Keywords

Navigation