Skip to main content
Log in

3-D Magnetotelluric Exploration of Tenerife Geothermal System (Canary Islands, Spain)

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The resistivity structure of the Tenerife geothermal system has been determined by the 3-D inversion of data from different magnetotelluric surveys. In this paper, the ocean and topography effects on the magnetotelluric data were investigated by constructing a 3-D conceptual geoelectrical model of the island. The study showed that these effects should be taken into account in order to obtain a reliable subsurface model of the island. Data from 148 sites were used during three-dimensional inversion. The most interesting feature in the final geoelectrical model of the geothermal system is a low resistivity structure (<10 Ωm) above the resistive core of the system. The low resistivity structure has been interpreted as a hydrothermal clay alteration cap typically generated in the conventional geothermal systems. The resistivity model has been correlated with a recent seismic velocity model, showing that a low resistivity structure surrounds an area with high P wave velocity and medium–high resistivity. This medium–high resistivity area can be associated with a slowly solidified magma and, therefore, with a hotter part of the geothermal system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ablay GJ (1997). Evolution of the Teide–pico viejo complex and magmatic system, Tenerife, Canary Islands. PhD Thesis. University of Bristol, Bristol (UK), p 336

  • Ablay GJ, Hürlimann M (2000) Evolution of the north flank of Tenerife by recurrent giant landslides. J Volcanol Geotherm Res 103:135–159

    Article  Google Scholar 

  • Ablay GJ, Marti J (1995) Stratigraphy and structure on the Teide-pico viejo volcanic complex. In: A field guide to the central volcanic complex of Tenerife (Canary Islands). Serie casa de Los volcanes, Cabildo Insular de Lanzarote 4, p 47

  • Ablay GJ, Carroll MR, Palmer MR, Martí J, Sparks RSJ (1998) Basanite-phonolite lineages of the Teide-pico viejo volcanic complex, Tenerife, Canary Islands. J Petrol 39(5):905–936

    Article  Google Scholar 

  • Aizawa K, Ogawa Y, Hashimoto T, Koyama T, Kanda W, Yamaya Y, Mishina M, Kagiyama T (2008) Shallow resistivity structure of Asama volcano and its implications for magma ascent process in the 2004 eruption. J Volcanol Geotherm Res 173(3–4):165–177

    Article  Google Scholar 

  • Aizawa K, Ogawa Y, Ishido T (2009) Groundwater flow and hydrothermal systems within volcanic edifices: delineation by electric self-potential and magnetotellurics. J Geophys Res Solid Earth 114(B1):B01208

    Article  Google Scholar 

  • Albert-Beltran JF, Diez JL, Valentin A, De la Noceda CG, Araña V (1989). El sistema fumaroliano del Teide. Los volcanes y la caldera del parque nacional del Teide (Tenerife, Islas Canarias). In: Araña V, Coello J (eds), ICONA, Serie Técnica, 7. P 347

  • Albert-Beltrán JF, Araña V, Diez JL, Valentin A (1990) Physical-chemical conditions of the Teide volcanic system (Tenerife, Canary Islands). J Volcanol Geotherm Res 43(1–4):321–332

    Article  Google Scholar 

  • Ancochea E, Fuster J, Ibarrola E, Cendrero A, Coello J, Hernan F, Cantagrel JM, Jamond C (1990) Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-ar data. J Volcanol Geotherm Res 44(3–4):231–249

    Article  Google Scholar 

  • Ancochea E, Brändle JL, Huertas MJ (1995) Alineaciones de centros volcánicos en la isla de Tenerife. Geogaceta 17:56–59

    Google Scholar 

  • Ancochea E, Cantagrel JM, Fuster JM, Huertas MJ, Arnaud NO (1998) Comment to “Vertical and lateral collapses on Tenerife (Canary Islands) and other volcanic ocean islands” by J. Martí, M. Hurlimann, G. J. Ablay and A. Gudmundsson. Geology (26):861–863

  • Ancochea E, Huertas MJ, Cantagrel JM, Coello J, Fúster JM, Arnaud N, Ibarrola E (1999) Evolution of the Cañadas edifice and its implications for the origin of the Cañadas Caldera (Tenerife, Canary Islands). J Volcanol Geotherm Res 88(3):177–199

    Article  Google Scholar 

  • Anderson E, Crosby D, Ussher G (2000). Bulls-eye!: simple resistivity imaging to reliably locate the geothermal reservoir. World Geothermal congress proceedings 2000. Kyushu, Tohoku, Japan, May 28–June 10, 2000 p 909

  • Aoki Y, Takeo M, Aoyama H, Fujimatsu J, Matsumoto S, Miyamachi H, Nakamichi H, Ohkura T, Ohminato T, Oikawa J et al (2009) P-wave velocity structure beneath Asama volcano, japan, inferred from active source seismic experiment. J Volcanol Geotherm Res 187(3–4):272–277

    Article  Google Scholar 

  • Araña V (1971) Litología y estructura del edificio Cañadas, Tenerife (Islas Canarias). East Geol 27:95–135

    Google Scholar 

  • Araña V, Barberi F, Ferrara G (1989). El complejo volcanico del Teide-pico viejo. In: Los volcanes y la caldera del parque nacional del Teide (Tenerife, islas canarias). Araña V, Coello J (eds), ICONA, Madrid, p 101

  • Araña V, Camacho AG, Garcia A, Montesinos FG, Blanco I, Vieira R, Felpeto A (2000) Internal structure of Tenerife (Canary Islands) based on gravity, aeromagnetic and volcanological data. J Volcanol Geotherm Res 103(1–4):43–64

    Article  Google Scholar 

  • Aubert M, Kieffer G (1998) Hypothèse d’un processus de glissement sur le secteur nord-est de la caldera de las canadas del Teide (Tenerife, canaries, espagne): arguments géophysiques et morpho-structuraux. Comptes Rendus De l’Académie Des Sciences—Series IIA—Earth and Planetary Science 326(2):87–92

    Article  Google Scholar 

  • Avdeev D, Avdeeva A (2009) 3D magnetotelluric inversion using a limited-memory quasi-newton optimization. Geophysics 74(3):F45–F57

    Article  Google Scholar 

  • Blanco-Montenegro I, Nicolosi I, Pignatelli A, García A, Chiappini M (2011) New evidence about the structure and growth of ocean island volcanoes from aeromagnetic data: the case of Tenerife, Canary Islands. J Geophys Res: Solid Earth 116(B3):B03102

    Google Scholar 

  • Brown RJ, Branney MJ (2004) Bypassing and diacrinous deposition from density currents: evidence from a giant regressive bed form in the poris ignimbrite, Tenerife, Canary Islands. Geology 32(5):445–448

    Article  Google Scholar 

  • Browne PRL (1978) Hydrothermal alteration in active geothermal fields. Annu Rev Earth Planet Sci 6:229–250

    Article  Google Scholar 

  • Bryan SE, Martí J, Cass RAF (1998) Stratigraphy of the bandas del sur formation: an extracaldera record of quaternary phonolitic explosive eruptions from the las Canada’s edifice, Tenerife (Canary Islands). Geol Mag 135(05):605–636

    Article  Google Scholar 

  • Bustillo MA (1989). Alteración hidrotermal en los azulejos. Los Volcanes y la caldera del parque nacional del Teide (Tenerife, Islas Canarias). Araña V, Coello J (eds), ICONA, Serie Técnica, 7, p 101

  • Camacho AG, Vieira R, De Toro C (1991) Microgravimetric model of the Las Cañadas caldera (Tenerife). J Volcanol Geotherm 47:75–88

    Article  Google Scholar 

  • Camacho AG, Montesinos FG, Vieira R (1996) Gravimetric structure of Teide volcano environment. In Proceedings of the second workshop on European laboratory volcanoes. Thira, Santorini Island, Greece, p 605

  • Camacho AG, Fernandez J, Gottsmann J (2011) The 3-D gravity inversion package GROWTH2.0 and its application to Tenerife Island, Spain. Comput Geosci 37(4):621–633

    Article  Google Scholar 

  • Canales JP, Dañobeitia JJ, Watts AB (2000) Wide-angle seismic constraints on the internal structure of Tenerife Canary Islands. J Volcanol Geotherm Res 103(1–4):65–81

    Article  Google Scholar 

  • Cantagrel JM, Arnaud NO, Ancoechea E, Fuster J, Huertas MJ (1999) Repeated debris avalanche on Tenerife and genesis of las Cañadas caldera wall (Canary Islands). Geology 27:739–742

    Article  Google Scholar 

  • Carracedo JC (1994) The Canary Islands: an example of structural control on the growth of large Oceanic-Island Volcanoes. J Volcanol Geotherm Res 60(3–4):225–241

    Article  Google Scholar 

  • Carracedo JC, Rodríguez Badiola E, Guillou H, Paterne M, Scaillet S, Pérez Torrado FJ, Paris R, Fra-Paleo U, Hansen A (2007) Eruptive and structural history of Teide volcano and rift zones of Tenerife Canary Islands. Geol Soc Am Bull 119:1027–1051

    Article  Google Scholar 

  • Choi J, Lee TJ, Yang J, Lee SK, Park IH, Song Y (2013) Three-dimensional interpretation considering the static and the sea-effects of magneto telluric data obtained in Jeju, Korea. J Appl Geophys doi: 10.1016/j.jappgeo.2013.07.003

  • Coppo N, Schnegg P, Heise W, Falco P, Costa R (2008) Multiple caldera collapses inferred from the shallow electrical resistivity signature of the las Cañadas Caldera, Tenerife Canary Islands. J Volcanol Geotherm Res 170(3–4):153–166

    Google Scholar 

  • Coppo N, Schnegg PA, Falco P, Costa R (2010) Conductive structures around las Cañadas Caldera, Tenerife (Canary Islands, Spain): a structural control. Geol Acta 8(1):67–82

    Google Scholar 

  • Cumming W (2009). Geothermal resource conceptual models using surface exploration data. In proceedings of thirty-fourth workshop on geothermal reservoir engineering. February 9–11; Stanford University, Stanford, California, 9–11 Feb 2009

  • Cumming W, Mackie R (2010) Resistivity imaging of geothermal resources using 1D, 2D and 3D MT inversion and TDEM static shift correction illustrated by a glass mountain case history. In proceedings of world geothermal congress 2010; 25–29 April; Bali, Indonesia, 25–29 April 2010

  • Cumming W, Nordquist G, Astra D (2000). Geophysical exploration for geothermal resources: an application for combined MT-TDEM. 70th annual international meeting. Soc Expl Geophys 1071–1074

  • Egbert G, Kelbert A (2012) Computational recipes for electromagnetic inverse problems. Geophys J Int 189:251–267

    Article  Google Scholar 

  • Farquharson CG, Oldenburg DW, Haber E, Shekhtman R (2002) Three-dimensional forward-modelling and inversion algorithms for magneto telluric data. In: Proceedings of the 16th workshop on electromagnetic data Santa Fe, New Mexico, June 2002 p 16

  • Galindo I, Soriano C, Martí J, Pérez N (2005) Graben structure in the Las Cañadas edifice (Tenerife, Canary Islands): implications for active degassing and insights on the caldera formation. J Volcanol Geotherm Res 144(1–4):73–87

    Article  Google Scholar 

  • Gamble TD, Goubau WM, Clarke J (1979) Error analysis for remote reference magnetotellurics. Geophysics 44(5):959–968

    Article  Google Scholar 

  • Garcia X, Jones AG (2010) Internal structure of the western flank of the Cumbre Vieja Volcano, la palma, canary islands, from land magnetotelluric imaging. J Geophys Resh: Solid Earth 115(B7): B07104

    Google Scholar 

  • García-Yeguas A, Koulakov I, Ibáñez JM, Rietbrock A (2012) High resolution 3D P wave velocity structure beneath Tenerife island (Canary Islands, Spain) based on tomographic inversion of active-source data. J Geophys Res: Solid Earth 117(B9)

  • Gottsmann J, Camacho AG, Martí J, Wooller L, Fernández J, García A, Rymer H (2008) Shallow structure beneath the central volcanic complex of Tenerife from new gravity data: implications for its evolution and recent reactivation. Phys Earth Planet Int 168(3–4):212–230

    Article  Google Scholar 

  • Harinarayana T, Abdul Azeez KK, Naganjaneyulu K, Manoj C, Veeraswamy K, Murthy DN, Prabhakar Eknath Rao S (2004) Magnetotelluric studies in puga valley geothermal field, NW Himalaya, Jammu and Kashmir, India. J Volcanol Geotherm Res 138(3–4):405–424

    Article  Google Scholar 

  • Heise W, Caldwell TG, Bibby HM, Bannister SC (2008) Three-dimensional modelling of magnetotelluric data from the rotokawa geothermal field, taupo volcanic zone, New Zealand. Geophys J Int 173:740–750

    Article  Google Scholar 

  • Hernández P, Pérez N, Salazar J, Sato M, Notsu K, Wakita H (2000) Soil gas CO2, CH4, and H2 distribution in and around las Cañadas Caldera, Tenerife, Canary Islands Spain. J Volcanol Geotherm Res 103(1–4):425–438

    Article  Google Scholar 

  • Hernández P, Pérez N, Salazar J, Reimer M, Notsu K, Wakita H (2004a) Radon and helium in soil gases at Cañadas Caldera, Tenerife, Canary Islands Spain. J Volcanol Geotherm Res 131(1–2):59–76

    Article  Google Scholar 

  • Hernández PA, Pérez NM, Salazar JML, Ferrell R, Álvarez CE (2004b) Soil volatile mercury, boron and ammonium distribution at Cañadas Caldera, Tenerife, Canary Islands Spain. Appl Geochem 19(6):819–834

    Article  Google Scholar 

  • Hill GJ, Caldwell TG, Heise W, Chertkoff DG, Bibby HM, Burgess MK, Cull JP, Cas RAF (2009) Distribution of melt beneath Mount st Helens and mount Adams inferred from magnetotelluric data. Nat Geosci 2(11):785–789

    Article  Google Scholar 

  • Ingham M (1992) Audiomagnetotellurics soundings on white Island Volcano. J Volcanol Geotherm Res 50(3):301–306

    Article  Google Scholar 

  • Ingham MR, Bibby HM, Heise W, Jones KA, Cairns P, Dravitzki S, Bennie SL, Caldwell TG, Ogawa Y (2009) A magnetotelluric study of Mount Ruapehu volcano, New Zealand. Geophys J Int 179(2):887–904

    Article  Google Scholar 

  • Jones AG, Dumas I (1993) Electromagnetic images of a volcanic zone. Phys Earth Planet Int 81(1–4):289–314

    Article  Google Scholar 

  • Kagiyama T, Utada H, Yamamoto T (1999) Magma ascent beneath Unzen volcano, SW Japan, deduced from the electrical resistivity structure. J Volcanol Geotherm Res 89(1–4):35–42

    Article  Google Scholar 

  • Kanda W, Tanaka Y, Utsugi M, Takakura S, Hashimoto T, Inoue H (2008) A preparation zone for volcanic explosions beneath naka-dake crater, aso volcano, as inferred from magneto telluric surveys. J Volcanol Geotherm Res 178(1):32–45

    Article  Google Scholar 

  • Lee TJ, Song Y, Uchida T (2007) Three-dimensional magneto telluric surveys for geothermal development in Pohang Korea. Explor Geophys 60:89–97

    Article  Google Scholar 

  • Mackie RL, Madden TR (1993) Three-dimensional magneto telluric inversion using conjugate gradients. Geophys J Int 115(1):215–229

    Article  Google Scholar 

  • Mackie RL, Smith JT, Madden TR (1994) Three-dimensional electromagnetic modelling using finite difference equations: the magneto telluric example. Radio Sci 29:923–935

    Article  Google Scholar 

  • Manzella A, Volpi G, Zaja A, Meju M (2004) Combined TEM-MT investigation of shallow-depth resistivity structure of mt somma-vesuvius. J Volcanol Geotherm Res 131(1–2):19–32

    Article  Google Scholar 

  • Martí J, Gudmundsson A (2000) The Las Cañadas caldera (Tenerife, Canary Islands): an overlapping collapse caldera generated by magma-chamber migration. J Volcanol Geotherm Res 103(1–4):161–173

    Article  Google Scholar 

  • Martí J, Mitjavila J, Araña V (1994) Stratigraphy, structure and geochronology of the Las Cañadas caldera (Tenerife, Canary Islands). Geol Mag 131(6):715–727

    Article  Google Scholar 

  • Martí J, Hurlimann M, Ablay GJ, Gudmundsson A (1997) Vertical and lateral collapses on Tenerife (Canary Islands) and other volcanic ocean islands. Geology 25(10):879–882

    Article  Google Scholar 

  • Martí A, Queralt P, Ledo J (2009) WALDIM: a code for the dimensionality analysis of magnetotelluric data using the rotational invariants of the magnetotelluric tensor. Comput Geosci 35(12):2295–2303

    Article  Google Scholar 

  • Matsushima N, Oshima H, Ogawa Y, Takakura S, Satoh H, Utsugi M, Nishida Y (2001) Magma prospecting in usu volcano, Hokkaido, Japan, using magneto telluric soundings. J Volcanol Geotherm Res 109(4):263–277

    Article  Google Scholar 

  • Monteiro Santos FA, Trota A, Soares A, Luzio R, Lourenço N, Matos L, Almeida E, Gaspar JL, Miranda JM (2006) An audio-magneto telluric investigation in Terceira Island (Azores). J Appl Geophys 59(4):314–323

    Article  Google Scholar 

  • Müller A, Haak V (2004) 3-D modelling of the deep electrical conductivity of merapi volcano (central java): integrating magnetotellurics, induction vectors and the effects of steep topography. J Volcanol Geotherm Res 138(3–4):205–222

    Article  Google Scholar 

  • Nam MJ, Kim HJ, Song Y, Lee TJ, Son J-, Suh JH (2007) Three-dimensional magneto telluric modelling including surface topography. Geophys Prospect 55:277–287

    Article  Google Scholar 

  • Nam MJ, Kim HJ, Song Y, Lee TJ, Suh JH (2009) Three-dimensional topographic and bathymetric effects on magnetotelluric responses in Jeju Island Korea. Geophys J Int 176(2):457–466

    Article  Google Scholar 

  • Newman GA, Wannamaker PE, Hohmann GW (1985) On the detectability of crustal magma chamber using the magnetotelluric method. Geophysics 50:1136–1143

    Article  Google Scholar 

  • Newman GA, Gasperikova E, Hoversten GM, Wannamaker PE (2008) Three-dimensional magnetotelluric characterization of the Coso geothermal field. Geothermics 37(4):369–399

    Article  Google Scholar 

  • Nurhasan Ogawa Y, Ujihara N, Tank SB, Honkura Y, Onizawa S, Mori T, Makino M (2006) Two electrical conductors beneath kusatsu-shirane volcano, Japan, imaged by audiomagnetotellurics and their implications for hydrothermal system. Earth Planets Space 58:1053–1059

    Google Scholar 

  • Ortiz R, Araña V, Astiz M, Garcia A (1986) Magnetotelluric study of the Teide (Tenerife) and Timanfaya (Lanzarote) volcanic areas. J Volcanol Geotherm Res 30(3–4):357–377

    Article  Google Scholar 

  • Pellerin L, Johnston JM, Hohmann GW (1996) A numerical evaluation of electromagnetic methods in geothermal exploration. Geophysics 61:121–130

    Article  Google Scholar 

  • Pérez NM, Wakita H, Nakai S, Sano Y, Williams SN (1994) 3He/4He isotopic ratios in volcanic-hydrothermal discharges from the Canary Islands, Spain: implications on the origin of the volcanic activity. Mineral Mag 58:709–710

    Article  Google Scholar 

  • Pérez NM, Nakai S, Wakita H, Hernández PA, Salazar JM (1996) Helium-3 emission in and around Teide volcano, Tenerife, Canary Islands Spain. Geophys Res Lett 23(24):3531–3534

    Article  Google Scholar 

  • Pous J, Heise W, Schnegg P, Muñoz G, Martí J, Soriano C (2002) Magnetotelluric study of the Las Cañadas caldera (Tenerife, Canary Islands): structural and hydrogeological implications. Earth Planet Sci Lett 204(1–2):249–263

    Article  Google Scholar 

  • Ritter O, Hoffmann-Rothe A, Müller A, Dwipa S, Arsadi EM, Mahfi A, Nurnusanto I, Byrdina S, Echternacht F, Haak V (1998) A magnetotelluric profile across central java, Indonesia. Geophys Res Lett 25(23):4265–4268

    Article  Google Scholar 

  • Sasaki Y (1999) Three-dimensional frequency-domain electromagnetic modelling using the finite-difference method. Butsuri-Tansa 52:421–432

    Google Scholar 

  • Schnegg PA (1997) Electrical structure of plaine des sables caldera, piton de la furanose volcano (Reunion Island). Ann Geofis 40:305–317

    Google Scholar 

  • Siniscalchi A, Tripaldi S, Neri M, Balasco M, Romano G, Ruch J, Schiavone D (2012) Flank instability structure of Mt Etna inferred by a magnetotelluric survey. J Geophys Res, 117

  • Siripunvaraporn W, Egbert G (2009) WSINV3DMT: vertical magnetic field transfer function inversion and parallel implementation. Phys Earth Planet Int 173(3–4):317–329

    Article  Google Scholar 

  • Siripunvaraporn W, Egbert G, Lenbury Y, Uyeshima M (2005) Three-dimensional magnetotelluric inversion: data-space method. Phys Earth Planet Int 150(1–3):3–14

    Article  Google Scholar 

  • Uchida T, Sasaki Y (2006) Stable 3D inversion of MT data and its application to geothermal exploration. Explor Geophys 37(3):223–230

    Article  Google Scholar 

  • Ussher G, Harvey C, Johnstone R, Anderson E (2000) Understanding resistivities observed in geothermal systems. In proceedings world geothermal congress 2000 Kyushu-Tohoku, Japan

  • Wannamaker PE (1991) Advances in three-dimensional magnetotelluric modelling using integral equations. Geophysics 56:1716–1728

    Article  Google Scholar 

  • Weaver JT, Agarwal AK, Lilley FEM (2000) Characterization of the magnetotelluric tensor in terms of its invariants. Geophys J Int 141(2):321–336. http://dx.doi.org/10.1046/j.1365-246x.2000.00089.x

    Google Scholar 

  • Wright PM, Ward SH, Ross HP, West RC (1985) State of the art geophysical exploration for geothermal resources. Geophysics 50:2666–2696

    Article  Google Scholar 

  • Yamaya Y, Alanis PKB, Takeuchi A, Cordon JM, Cordon JM, Cordon JM, Cordon JM Jr, JMogi T, Hashimoto T, Sasai Y, Nagao T (2013) A large hydrothermal reservoir beneath taal volcano (Philippines) revealed by magnetotelluric resistivity survey: 2D resistivity modelling. Bull Volc 75(7):1–13

    Google Scholar 

  • Yang J, Min D, Yoo H (2010) Sea effect correction in magnetotelluric (MT) data and its application to MT soundings carried out in Jeju Island Korea. Geophys J Int 182(2):727–740

    Article  Google Scholar 

  • Young K, Reber T, Witherbee K (2012) Hydrotermal exploration best practices and geothermal knowledge exchange on opened. In: Proceedings of thirty-seventh workshop on geothermal reservoir engineering. Stanford University, Stanford, California, January 30–February 1, 2012 SGP-TR-194

Download references

Acknowledgments

The authors sincerely thank the Editor in chief M. J. Rycroft and the three anonymous reviewers for their useful comments. This work was funded by the projects “GEOTHERCAN: Desarrollo experimental de modelos 3D para la caracterización de yacimientos geotérmicos en el subsuelo de Canarias mediante el uso y la aplicación combinada de métodos geofísicos, geoquímicos y geológicos” (IPT-2011-1186-920000) and “PIER- CO2” (CGL2009-07604) of the Ministerio de Ciencia e Innovación. The authors also wish to acknowledge to J. De la Puente from Repsol-BSC Research Centre for his technical support. We also thank ITER (Instituto Tecnológico y de Energías Renovables de Tenerife) for field support. Gary Egbert is thanked for providing the ModEm code. Xenia Ogaya is thanked for her useful comments. Perla Piña-Varas was supported by the Spanish Geological Survey (IGME).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Piña-Varas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10712_2014_9280_MOESM1_ESM.zip

Supplementary material 1 Observed apparent resistivity and phase compared with the response of the 3-D final model (Fig. 8, 9 and 10). Sites TENxxx and sites xx corresponds to 2009 and 2012 survey. Sites Oxx, Nxx, Dxx and sites xxx corresponds to 1987 and 1991 surveys respectively. (ZIP 17391 kb)

10712_2014_9280_MOESM2_ESM.tif

Supplementary material 2 Sensitivity test carried out against the MH body. a) The final model was replaced by a homogeneous layer of 130 Ωm from -540 m a.s.l to the bottom of the model. b) Apparent resistivity pseudosections showing the difference between the final model response and the modified model (MH_1). The data set was projected in a N80E direction profile (see Fig. 4a for location). T: Teide. (TIFF 2411 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piña-Varas, P., Ledo, J., Queralt, P. et al. 3-D Magnetotelluric Exploration of Tenerife Geothermal System (Canary Islands, Spain). Surv Geophys 35, 1045–1064 (2014). https://doi.org/10.1007/s10712-014-9280-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-014-9280-4

Keywords

Navigation