Skip to main content

Advertisement

Log in

EM Monitoring of Crustal Processes Including the Use of the Network-MT Observations

  • Original Paper
  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

There are several kinds of coupling mechanisms which can convert mechanical, chemical or thermal energies due to seismic or volcanic activities into electromagnetic energies. As a result of concentrated efforts in laboratory and theoretical research, the basic relationship between the intensity of electromagnetic sources and changes in mechanical, chemical and thermal state is becoming established. Also with the progress of the electromagnetic simulation techniques, it has been possible to evaluate in situ sensitivity. Based on this progress and also due to extensive improvement in measuring techniques, many field experiments have been performed to elucidate subsurface geophysical processes underlying the preparation stage, onset, and subsequent healing stage of earthquakes and volcanic eruptions. In volcanic studies, many studies have reported the measurement of electromagnetic signals which were successfully interpreted in terms of various driving mechanisms. Although there have been numerous reports about the existence of precursory electromagnetic signals in seismic studies, only a few of them could be successfully explained by the proposed mechanisms, whereas coseismic phenomena are often consistent with those mechanisms including the absence of detectable signals. In many cases, one or two orders of higher sensitivity were required, especially for precursory signals. Generally, electromagnetic methods are more sensitive to near-surface phenomena. It will be necessary to discriminate electromagnetic signals due to these near-surface sources, which often possess no relationship with the crustal activities. Further efforts to enhance in situ sensitivity through improvements in observation techniques and in data processing techniques are recommended. At the same time, multi-disciplinary confirmation against the validity of electromagnetic phenomena will inevitably be necessary. A Network-MT observation technique has been developed to determine large-scale deep electrical conductivity structure. In the method, a telephone line network or purpose-built long baseline cables are utilized to measure voltage differences with long electrode separations. Because of the averaging effect of the electric fields, static shift problems due to small-scale, near-surface lateral heterogeneities can be alleviated. Several field experiments revealed regional scale deep electrical conductivity structures related to slab subduction or its stagnation, which enable us to elucidate underlying physical processes caused by the slab motion. The technique can also be applied to monitor the electric potential field related to crustal activities. The annual variation of the potential field and electrical conductivity in the French Alps were interpreted to be caused by the annual variation of lake water level. The method was also used to monitor the regional scale spatio-temporal variation of the SP field and electrical conductivity before and at the onset of earthquakes and volcanic eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abdullabekov KN, Berdaliyev YE, Pushkov AN et al (1979) Local variation of the geomagnetic field during the filling of a reservoir. Geomagn Aeronomy 19(2):204–206

    Google Scholar 

  • Ahmad MU (1964) A laboratory study of streaming potentials. Geophys Prospect 12:49–64

    Google Scholar 

  • Aizawa K (2004) A large self-potential anomaly and its changes on the quiet Mt. Fuji, Japan. Geophys Res Lett 31:L05612, doi:10.1029/2004GL019462

    Google Scholar 

  • Aizawa K, Yoshimura R, Oshiman N et al (2005) Hydrothermal system beneath Mt. Fuji volcano inferred from magnetotellurics and electric self-potential. Earth Planet Sc Lett 235(1–2):343–355

    Google Scholar 

  • Aki K, Richards PG (1980) Quantitative seismology, theory and methods, vol. 1. W. H. Freeman and Company, New York

    Google Scholar 

  • Avdeev DB (2005) Three-dimensional electromagnetic modelling and inversion from theory to application. Surv Geophys 26(6):767–799

    Google Scholar 

  • Bahr K (1988) Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion. J Geophys 62:119–127

    Google Scholar 

  • Bahr K (2000) Percolation in the crust derived from distortion of electric fields. Geophys Res Lett 27:1049–1052

    Google Scholar 

  • Bahr K, Smirnov M, Steveling E et al (2002) A gelation analogy of crustal formation derived from fractal conductive structures. J Geophys Res 107(B11):2314, doi:10.1029/2001JB000506

    Google Scholar 

  • Bakun WH (1987) Parkfield, California, earthquake prediction scenarios and response plans. U. S. Geological Survey Open File Report, 87–92

  • Bakun WH, Aagaard B, Dost B et al (2005) Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature 437(7061):969–974

    Google Scholar 

  • Banks PO, Stacey FD, Liu SW (1991) Piezomagnetic fields of screw dislocation fault. J Geophys Res 96:21575–21582

    Google Scholar 

  • Beamish D (1999) Characteristics of near surface electrokinetic coupling. Geophys J Int 137:231–242

    Google Scholar 

  • Bernard P (1992) Plausibility of long distance electrotelluric precursors to earthquakes. J Geophys Res 97:17531–17546

    Google Scholar 

  • Biagi PF, Kingsley SP, Vallianatos F (2000) Earthquake precursors. Phys Chem Earth 25(3):225

    Google Scholar 

  • Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid 1 low-frequency range. J Acoust Soc Am 28:168–178

    Google Scholar 

  • Bishop JR (1981) Piezoelectric effects on quartz-rich rocks. Tectonophysics 77:297–321

    Google Scholar 

  • Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Brace WF, Orange AS (1968a) Electrical resistivity changes in saturated rocks during fracture and sliding. J Geophys Res 73:1433–1445

    Google Scholar 

  • Brace WF, Orange AS (1968b) Further studies of the effects of pressure on electrical resistivity of rocks. J Geophys Res 73:5407–5420

    Google Scholar 

  • Brennan BJ, Hastie LM (1979) Piezomagnetic effect of ground loading by lake Gordon, Tasmania. Tectonophysics 56:T9–T16

    Google Scholar 

  • Butler KE, Russel RD, Kepic AW et al (1996) Measurements of the seismic response from a shallow boundary. Geophysics 61:1769–1778

    Google Scholar 

  • Byrdina S, Friedel S, Wassermann J et al (2003) Self-potential variations associated with ultra-long-period seismic signals at Merapi volcano. Geophys Res Lett 30(22):2156, doi:10.1029/2003GL018272

    Google Scholar 

  • Caldwell TG, Bibby HM, Brown C (2004) The magnetotelluric phase tensor. Geophys J Int 158(2):457–469

    Google Scholar 

  • Campbell WH (1986) An interpretation of induced electric currents in long pipelines caused by natural geomagnetic sources of the upper-atmosphere. Surv Geophys 8(3):239–259

    Google Scholar 

  • Chave AD, Smith JT (1994) On electric and magnetic galvanic distortion tensor decompositions. J Geophys Res 99(B3):4669–4682

    Google Scholar 

  • Chave AD, Thomson DJ, Ander ME (1987) On the robust estimation of power spectra, coherences, and transfer-functions. J Geophys Res-Solid 92(B1):633–648

    Google Scholar 

  • Chirkov YB (2004) The study of local sources of ULF geoelectric signals with steep fronts. Ann Geophys 47(1):213–227

    Google Scholar 

  • Chu JJ, Gui X, Dai J et al (1996) Geoelectric signals in China and the earthquake generation process. J Geophys Res 101(B6):13869–13882

    Google Scholar 

  • Corwin RF, Hoover DB (1979) The self-potential method in geothermal exploration. Geophysics 44:226–245

    Google Scholar 

  • Currenti G, Del Negro C, Nunnari G (2005) Inverse modelling of volcanomagnetic fields using a genetic algorithm technique. Geophys J Int 163(1):403–418

    Google Scholar 

  • Davis PM, Johnston MJS (1983) Localized geomagnetic field changes near active faults in California 1974–1980. J Geophys Res 88:9452–9460

    Google Scholar 

  • Davis PM, Stacey FD (1972) Geomagnetic anomalies caused by a man-made lake. Nature 240:348–349

    Google Scholar 

  • deGroot-Hedlin C (1991) Removal of static shift in two dimensions by regularized inversion. Geophysics 56:2102–2106

    Google Scholar 

  • Del Negro C, Currenti G (2003) Volcanomagnetic signals associated with the 2001 flank eruption of Mt. Etna (Italy). Geophys Res Lett 30(7):1357, doi:10.1029/2002GL015481

    Google Scholar 

  • Del Negro C, Ferrucci F (1998) Magnetic history of a dyke on Mount Etna (Sicily). Geophys J Int 133(2):451–458

    Google Scholar 

  • Del Negro C, Ferrucci F (2000) Volcanomagnetic effects at Vulcano Island (Aeolian archipelago, Italy). Geophys J Int 140(1):83–94

    Google Scholar 

  • Del Negro C, Currenti G, Napoli R et al (2004) Volcanomagnetic changes accompanying the onset of the 2002–2003 eruption of Mt. Etna (Italy). Earth Planetary Sci Lett 229(1–2):1–14

    Google Scholar 

  • Dietrich JH (1992) Earthquake nucleation on faults with rate- and state-dependent strength. Tectonophysics 211:115–134

    Google Scholar 

  • Egbert G, Booker JR (1986) Robust estimation of geomagnetic transfer functions. Geophys J R Astron Soc 87:173–194

    Google Scholar 

  • Egbert GD, Booker JR (1992) Very long period magnetotellurics at tucson-observatory—implications for mantle conductivity. J Geophys Res-Solid 97(B11):15099–15112

    Google Scholar 

  • Egbert GD, Booker JR, Schultz A (1992) Very long period magnetotellurics at tucson-observatory—estimation of impedances. J Geophys Res-Solid 97(B11):15113–15128

    Google Scholar 

  • Enomoto Y, Zheng Z (1998) Possible evidences of earthquake lightning accompanying the 1995 Kobe earthquake inferred from the Nojima fault gouge. Geophys Res Lett 25(14):2721–2724

    Google Scholar 

  • Fenoglio MA, Johnston MJS, Byerlee JD (1995) Magnetic and electric-fields associated with changes in high pore pressure in fault zones—application to the Loma-Prieta Ulf Emissions. J Geophys Res-Solid 100(B7):12951–12958

    Google Scholar 

  • Ferré EC, Zechmeister MS, Geissman JW et al (2005) The origin of high magnetic remanence in fault pseudotachylytes: theoretical considerations and implication for coseismic electrical currents. Tectonophysics 402:125–139

    Google Scholar 

  • Fraser-Smith AC, Bernardi A, McGill PR et al (1990) Low-frequency magnetic field measurements near the epicenter of the Ms7.1 Loma Prieta Earthquake. Geophys Res Lett 17:1465–1468

    Google Scholar 

  • Freund F (2000) Time-resolved study of charge generation and propagation in igneous rocks. J Geophys Res 105:11001–11019

    Google Scholar 

  • Freund F (2002) Charge generation and propagation in igneous rocks. J Geodyn 33:543–570

    Google Scholar 

  • Friedel S, Byrdina S, Jacobs F et al (2004) Self-potential and ground temperature at Merapi volcano prior to its crisis in the rainy season of 2000–2001. J Volcanol Geotherm Res 134(3):149–168

    Google Scholar 

  • Frost BR, Fyfe WS, Tazaki K et al (1989) Grain-boundary graphite in rocks and implications for high electrical conductivity in the lower crust. Nature 340:134–136

    Google Scholar 

  • Fujinawa Y, Takahashi K, Matsumoto T et al (2000) Electromagnetic field anomaly associated with the 1998 seismic swarm in Central Japan. Phys Chem Earth Pt A 25(3):247–253

    Google Scholar 

  • Fujinawa Y, Matsumoto T, Takahashi K (2002) Modeling confined pressure changes inducing anomalous electromagnetic fields related with earthquakes. J Appl Geophys 49(1–2):101–110

    Google Scholar 

  • Fukao Y, Widiyantoro S, Obayashi M (2001) Stagnant slabs in the upper and lower mantle transition region. Rev Geophys 39:291–323

    Google Scholar 

  • Fukuchi T (2003) Strong ferrimagnetic resonance signal and magnetic susceptibility of the Nojima pseudotachylyte in Japan and their implication for coseismic electromagnetic changes. J Geophys Res 108(B6):2312, doi:10.1029/2002JB002007

    Google Scholar 

  • Garambois S, Dietrich M (2001) Seismo-electric wave conversion in porous media: field measurements and transfer function analysis. Geophysics 66:1417–1430

    Google Scholar 

  • Garambois S, Dietrich M (2002) Full waveform numerical simulations of seismoelectromagnetic wave conversions in fluid-saturated stratified porous media. J Geophys Res-Solid 107(B7):2148, 10.1029/2001JB000316

    Google Scholar 

  • Glover PWJ, Gomez JB, Meredith PG (2000a) Fractures in saturated rocks undergoing triaxial deformation using complex electrical measurements. Earth Planet Sci Lett 183:201–213

    Google Scholar 

  • Glover PWJ, Hole PJ, Pous J (2000b) A modified Archie’s law for two conducting phases. Earth Planet Sci Lett 180:369–383

    Google Scholar 

  • Groom RW, Bahr K (1992) Corrections for near surface effects: decomposition of the magnetotelluric impedance tensor and scaling corrections for regional resistivities: a tutorial. Surv Geophys 13:341–379

    Google Scholar 

  • Groom RW, Bailey RC (1989) Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortions. J Geophys Res 94:1913–1925

    Google Scholar 

  • Gruszow S, Rossignol JC, Tzanis A et al (1996) Identification and analysis of electromagnetic signals in Greece: the case of the Kozani earthquake VAN prediction. Geophys Res Lett 23(16):2025–2028

    Google Scholar 

  • Guichet X, Jouniaux L, Pozzi JP (2003) Streaming potential of a sand column in partial saturation conditions. J Geophys Res-Solid 108(B3):2141, doi:10.1029/2001JB001517

    Google Scholar 

  • Haartsen MW, Pride S (1997) Electroseismic waves from point sources in layered media. J Geophys Res 102:24745–24769

    Google Scholar 

  • Hamano Y (1983) Experiments on the stress sensitivity of natural remanent magnetization. J Geomagnet Geoelectr 35:155–172

    Google Scholar 

  • Hanekop O, Simpson F (2006) Error propagation in electromagnetic transfer functions: what role for the magnetotelluric method in detecting earthquake precursors? Geophys J Int 165:763–774

    Google Scholar 

  • Hao JQ, Hastie LM, Stacey FD (1982) Theory of the seismomagnetic effect: a reassessment. Phys Earth Planet Interior 28:129–140

    Google Scholar 

  • Harinarayana T, Zlotnicki J (2006) Special issue of journal of applied geophysics “electrical and electromagnetic studies in geothermally active regions”. J Appl Geophys 58:263–264

    Google Scholar 

  • Hase H, Ishido T, Takakura S et al (2003) Zeta potential measurement of volcanic rocks from Aso caldera. Geophys Res Lett 30(23):2210, doi:10.1029/2003GL018694

    Google Scholar 

  • Hase H, Hashimoto T, Sakanaka S et al (2005) Hydrothermal system beneath Aso volcano as inferred from self-potential mapping and resistivity structure. J Volcanol Geotherm Res 143(4):259–277

    Google Scholar 

  • Hashimoto T, Tanaka Y (1995) A large self-potential anomaly on Unzen Volcano, Shimabara Peninsula, Kyushu Island, Japan. Geophys Res Lett 22:191–194

    Google Scholar 

  • Hashimoto T, Tanaka Y, Johnston MJS et al (2003) On the annual variations on geomagnetic differences observed in Long Valley Caldera, California. Annuals of the Disaster Prevention Research Institute, Kyoto University 46 B:765–777 (in Japanese with English abstracts)

    Google Scholar 

  • Hattori K, Serita A, Gotoh K et al (2004) ULF geomagnetic anomaly associated with 2000 Izu Islands earthquake swarm, Japan. Phys Chem Earth 29(4–9):425–435

    Google Scholar 

  • Hautot S (2005) Modeling temporal variations of electrical resistivity associated with pore pressure change in a kilometer-scale natural system. Geochem Geophys Geosyst 6(6):Q06005, doi:10.1029/2004GC000859

    Google Scholar 

  • Hautot S, Tarits P (2002) Effective electrical conductivity of 3-D heterogeneous porous media. Geophys Res Lett 29(14):1669, doi:10.1029/2002GL014907

    Google Scholar 

  • Hautot S, Tarits P, Perrier F et al (2002) Groundwater electromagnetic imaging in complex geological and topographical regions: a case study of a tectonic boundary in the French Alps. Geophysics 53:967–978

    Google Scholar 

  • Hayakawa M (ed) (1999) Atmospheric and ionospheric electromagnetic phenomena associated with earthquakes. Terra Scientific Publishing Co., Tokyo, Japan

    Google Scholar 

  • Hayakawa M, Molchanov OA (eds) (2002) Seismoelectromagnetics (Lithosphere–Atmosphere–Ionosphere Coupling). Terra Scientific Publishing Co., Tokyo, Japan

    Google Scholar 

  • Hayakawa M, Molchanov O A, Biagi P et al (2004) Preface. Phys Chem Earth 29:287

    Google Scholar 

  • Honkura Y, Matsushima M, Oshiman N et al (2002) Small electric and magnetic signals observed before the arrival of seismic wave. Earth Planets Space 54(12):E9–E12

    Google Scholar 

  • Hopkinson J (1889) Magnetic and other physical properties of iron at a high temperature. Philos Trans R Soc 46:443–465

    Google Scholar 

  • Hoversten GM, Becker A (1995) EM1DSH with EMMODEL a Motif GUI, numerical modeling of multiple thin 3D sheets in a layered earth, University of California at Berkeley, Engineering Geoscience Department, Jun 12, 1995, and references therein

  • Hurst AW, Rickerby PC, Scott BJ et al (2004) Magnetic field changes on White Island, New Zealand, and the value of magnetic changes for eruption forecasting. J Volcanol Geotherm Res 136(1–2):53–70

    Google Scholar 

  • Ichiki M, Uyeshima M, Utada H et al (2001) Upper mantle conductivity structure of the back-arc region beneath northeastern China. Geophys Res Lett 28(19):3773–3776

    Google Scholar 

  • Ichiki M, Baba K, Obayashi M et al (2006) Water content and geotherm in the upper mantle above the stagnant slab: interpretation of electrical conductivity and seismic P-wave velocity models. Phys Earth Planet Interior 155(1–2):1–15

    Google Scholar 

  • Ikeda T (1990) Fundamentals of piezoelectricity. Oxford University Press, Oxford, UK

    Google Scholar 

  • Ishido T (2004) Electrokinetic mechanism for the “W”-shaped self-potential profile on volcanoes. Geophys Res Lett 31(15):L15616, doi:10.1029/2004GL020409

    Google Scholar 

  • Ishido T, Mizutani H (1981) Experimental and theoretical basis of electrokinetic phenomena in rock-water systems and its applications to geophysics. J Geophys Res 86(NB3):1763–1775

    Google Scholar 

  • Ishido T, Pritchett JW (1999) Numerical simulation of electrokinetic potentials associated with subsurface fluid flow. J Geophys Res-Solid 104(B7):15247–15259

    Google Scholar 

  • Ishikawa N, Hashimoto M (1999) Average horizontal crustal strain rates in Japan during interseismic period deduced from geodetic surveys (Part 2). Zisin (J Seismol Soc Jpn) 52:299–315 (in Japanese with English abstracts)

    Google Scholar 

  • Johnston MJS (1997) Review of electric and magnetic fields accompanying seismic and volcanic activity. Surv Geophys 18(5):441–475

    Google Scholar 

  • Johnston MJS, Mueller RJ, Sasai Y (1994) Magnetic-field observations in the near-Field the 28 June 1992 M(W) 7.3 Landers, California, Earthquake. Bull Seismol Soc Am 84(3):792–798

    Google Scholar 

  • Johnston MJS, Byerlee JD, Lockner D (2001) Rapid fluid disruption: a source for self-potential anomalies on volcanoes. J Geophys Res 106(B3):4327–4335

    Google Scholar 

  • Johnston MJS, Byerlee JD, Lockner D (2002) Reply to comment by Revil on “Rapid fluid disruption: a source for self-potential anomalies on volcanoes” by M. J. S. Johnston, J. D. Byerlee, and D. Lockner. J Geophys Res 107(B8):2159, 10.1029/2002JB001794

    Google Scholar 

  • Jones AG (1988) Static shift of magnetotelluric data and its removal in a sedimentary basin environment. Geophysics 53:967–978

    Google Scholar 

  • Jouniaux L, Pozzi JP (1995) Streaming potential and permeability of saturated sandstones under triaxial stress: consequences for electrotelluric anomalies prior to earthquakes. J Geophys Res 100:10197–10209

    Google Scholar 

  • Kagiyama T, Utada H, Yamamoto T (1999) Magma ascent beneath Unzen Volcano, SW Japan, deduced from the electrical resistivity structure. J Volcanol Geotherm Res 89(1–4):35–42

    Google Scholar 

  • Kalashnikov AG, Kapista SP (1952) Magnetic susceptibility of rocks under mechanical stresses. Dokl Akad Nauk USSR 86:521–523

    Google Scholar 

  • Kanda W, Uyeshima M, Makris J et al (2000) Electric field polarization around Ioannina VAN station, Greece, inferred from a resistivity mapping. Phys Earth Planet Interior 119(3–4):269–283

    Google Scholar 

  • Kariya KA, Shankland TJ (1983) Electrical conductivity of dry lower crustal rocks. Geophysics 48:52–61

    Google Scholar 

  • Kinoshita M, Uyeshima M, Uyeda S (1989) Earthquake prediction research by means of telluric potential monitoring, Progress Report No. 1: installation of monitoring network. Bull Earthq Res I Tokyo 64:255–311

    Google Scholar 

  • Kiss J, Szarka L, Prácser E (2005) Second-order magnetic phase transition in the Earth. Geophysical Research Letters 32:L24310, doi:10.1029/2005GL024199

    Google Scholar 

  • Kondo S, Uyeda S, Nagao T (2002) The selectivity of the Ioannina VAN station. J Geodyn 33:433–461

    Google Scholar 

  • Kumagai H, Ohminato T, Nakano M et al (2001) Very-long-period seismic signals and caldera formation at Miyake Island, Japan. Science 293:687–690

    Google Scholar 

  • Langbein J, Borcherdt R, Dreger D et al (2005) Preliminary report on the 28 September 2004, M 6.0 Parkfield, California earthquake. Seismol Res Lett 76(1):10–26

    Google Scholar 

  • Lazarus D (1996) Physical mechanisms for generation and propagation of seismic electric signals. In: Lighthill Sir J (ed) A critical review of VAN: earthquake prediction from seismic electric signals. World Scientific, Singapore, pp 91–96

    Google Scholar 

  • Lewicki JL, Connor C, St-Amand K et al (2003) Self-potential, soil CO2 flux, and temperature on Masaya volcano, Nicaragua. Geophys Res Lett 30(15):1817, doi:10.1029/2003GL017731

    Google Scholar 

  • Lorne B, Perrier F, Avouac JP (1999) Streaming potential measurements 2. Relationship between electrical and hydraulic flow patterns from rock samples during deformation. J Geophys Res-Solid 104(B8):17879–17896

    Google Scholar 

  • Madden TR (1983) High sensitivity monitoring of resistivity and self potential variations in the Palmdale and Hollister areas for earthquake prediction studies. Final technical report, contract 14-08-0001-19249, U.S. Geol Surv, Reston, Va

  • Madden TR, LaTorraca GA, Park SK (1993) Electrical conductivity variations around the Palmdale section of the San Andreas Fault Zone. J Geophys Res 98:795–808

    Google Scholar 

  • Marquis G, Darnet M, Sailhac P et al (2002) Surface electric variations induced by deep hydraulic stimulation: an example from the Soultz HDR site. Geophys Res Lett 29(14):1662, 10.1029/2002GL015046

    Google Scholar 

  • Martí A, Queralt P, Jones AG, Ledo J (2005) Improving Bahr’s invariant parameters using the WAL approach. Geophys J Int 163:38–41

    Google Scholar 

  • Maruyama T (1964) Statical elastic dislocations in an infinite and semi-infinite medium. Bull Earthq Res I Tokyo 42:289–368

    Google Scholar 

  • Matsushima M, Honkura Y, Oshiman N et al (2002) Seismoelectromagnetic effect associated with the Izmit earthquake and its aftershocks. Bull Seismol Soc Am 92(1):350–360

    Google Scholar 

  • Merill RT, McElhinny MW, McFadden PL (1996) The magnetic field of the earth: paleomagnetism, the core, and the deep mantle. International geophysics series. Adademic Press, Inc., San Diego, USA

    Google Scholar 

  • Michel S, Zlotnicki J (1998) Self-potential and magnetic surveying of La Fournaise volcano (Re´union Island): correlations with faulting, fluid circulation, and eruption. J Geophys Res 103:17845–17857

    Google Scholar 

  • Mikhailov OV, Haartsen MW, Toksoz MN (1997) Electroseismic investigation of the shallow subsurface: field measurements and numerical modeling. Geophysics 62:97–105

    Google Scholar 

  • Mikhailov OV, Queen JH, Toksoz MN (2000) Using borehole electroseismic measurements to detect and characterize fractured (permeable) zones. Geophysics 65:1098–1112

    Google Scholar 

  • Mizutani H, Ishido T (1976) New interpretation of magnetic-field variation associated with Matsushiro earthquakes. J Geomagnet Geoelectr 28(2):179–188

    Google Scholar 

  • Mizutani H, Ishido T, Yokokura T et al (1976) Electrokinetic phenomena associated with earthquakes. Geophys Res Lett 3(7):365–368

    Google Scholar 

  • Mogi K (1958) Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bull Earthq Res I Tokyo 36:99–134

    Google Scholar 

  • Mori T (1985) A test observation of geoelectric field with a long electrode span. Pap Meteorol Geophys 36:149–155 (in Japanese)

    Google Scholar 

  • Mori T (1987) Variations in the geoelectric field with relation to crustal conditions of the earth. Geophys Mag 42:41–104

    Google Scholar 

  • Morrow C, Brace WF (1981) Electrical resistivity changes in tuffs due to stress. J Geophys Res 86:2929–2934

    Google Scholar 

  • Murakami H, Hashimoto T, Oshiman N et al (2001) Electrokinetic phenomena associated with a water injection experiment at the Nojima fault on Awaji Island, Japan. Island Arc 10(3–4):244–251

    Google Scholar 

  • Nagao T, Uyeda S, Asai Y et al (1996) Anomalous changes in geoelectric potential preceding four earthquakes in Japan. In: Lighthill Sir J (ed) A critical review of VAN. World Scientific, Singapore, pp 292–300

    Google Scholar 

  • Nagao T, Orihara Y, Yamaguchi T et al (2000) CoseismicCoseismic geoelectric potential changes observed in Japan. Geophys Res Lett 27(10):1535–1538

    Google Scholar 

  • Nagata T (1943) The natural remanent magnetism of volcanic rocks and its relation to geomagnetic phenomena. Bull Earthq Res I Tokyo 21:1–196

    Google Scholar 

  • Nagata T (1970) Basic magnetic properties of rocks under the effect of mechanical stresses. Tectonophysics 9:167–195

    Google Scholar 

  • Nakamura N, Hirose T, Borradaile J (2002) Laboratory verification of submicron magnetic production in pseudotachylytes: relevance for paleointensity studies. Earth Planet Sci Lett 201:13–18

    Google Scholar 

  • Neal SL, Mackie RL, Larsen JC et al (2000) Variations in the electrical conductivity of the upper mantle beneath North America and the Pacific Ocean. J Geophys Res-Solid 105(B4):8229–8242

    Google Scholar 

  • Néel L (1949) The’orie du trainage magne’tizue des ferromagne’tiques aux grains fins avec applications aux terres cuites. Ann Geophys 5:99–136

    Google Scholar 

  • Nesbitt BE (1993) Electrical resistivities of crustal fluids. J Geophys Res 98:4301–4310

    Google Scholar 

  • Nishida Y, Sugisaki Y, Takahashi K et al (2004) Tectonomagnetic study in the eastern part of Hokkaido, NE Japan: discrepancy between observed and calculated results. Earth Planets Space 56(11):1049–1058

    Google Scholar 

  • Nitsan U (1977) Electromagnetic emmision accomapanying fracture of quartz-bearing rocks. Geophys Res Lett 4:333–336

    Google Scholar 

  • Ogawa Y (2002) On two-dimensional modeling of magnetotelluric field data. Surv Geophys 23(2–3):251–273

    Google Scholar 

  • Ogawa Y, Uchida T (1996) A two-dimensional magnetotelluric inversion assuming Gaussian static shift. Geophys J Int 126:69–76

    Google Scholar 

  • Ogawa T, Utada H (2000a) Coseismic piezoelectric effects due to a dislocation—1. An analytic far and early-time field solution in a homogeneous whole space. Phys Earth Planet Interior 121(3–4):273–288

    Google Scholar 

  • Ogawa T, Utada H (2000b) Electromagnetic signals related to incidence of a teleseismic body wave into a subsurface piezoelectric body. Earth Planets Space 52(4):253–260

    Google Scholar 

  • Ohnaka M (1992) Earthquake source nucleation: a physical model for short-term precursors. Tectonophysics 211:149–178

    Google Scholar 

  • Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 82:1018–1992

    Google Scholar 

  • Okubo A, Oshiman N (2004) Piezomagnetic field associated with a numerical solution of the Mogi model in a non-uniform elastic medium. Geophys J Int 159(2):509–520

    Google Scholar 

  • Oshiman N, Sasai Y, Miyakoshi J et al (1991) Continuous observation of piezomagnetic changes due to ground loading by Lake Nichinan, Tottori, Japan. Proceedings of Conductivity Anomaly Symposium (1991):137–148 (in Japanese)

  • Overbeek JThG (1952) In: Kruyt HR (ed) Irreversible systems, colloid science, vol. 1, Elsevier, New York, 389 pp

  • Park SK (1991) Monitoring changes of resistivity prior to earthquakes in Parkfield, California with telluric arrays. J Geophys Res 96:14211–14237

    Google Scholar 

  • Park SK (1996) Precursors to earthquakes: seismoelectromagnetic signals. Surv Geophys 17(4):493–516

    Google Scholar 

  • Park SK (1997) Monitoring resistivity changes in Parkfield, California: 1988–1995. J Geophys Res 102:24545–24559

    Google Scholar 

  • Park SK (2002) Perspectives on monitoring resistivity changes with telluric signals at Parkfield, Calfornia: 1988–1999. J Geodyn 33:379–399

    Google Scholar 

  • Park SK, Fitterman DV (1990) Sensitivity of the telluric monitoring array in Parkfiekd, California to changes of resistivity. J Geophys Res 95:15557–15571

    Google Scholar 

  • Park SK, Johnston MJS, Madden TR et al (1993) Electromagnetic precursors in the ULF band: a review of observations and mechanisms. Rev Geophys 31:117–132

    Google Scholar 

  • Parker RL, Booker JR (1996) Optimal one-dimensional inversion and bounding of apparent resistivity and phase measurement. Phys Earth Planet Interior 98:269–282

    Google Scholar 

  • Parks GA (1965) The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem Rev 65:177–198

    Google Scholar 

  • Parrot M (2006) Preface special issue of planetary and space science ‘DEMETER’. Planet Space Sci 54:411–412

    Google Scholar 

  • Perrier F, Trique M, Lorne B et al (1998) Electric potential variations associated with yearly lake level variations. Geophys Res Lett 25(11):1955–1958

    Google Scholar 

  • Perrier F, Trique M, Aupiais J et al (1999) Electric potential variations associated with periodic spring discharge in western Nepal. CR Acad Sci II A 328(2):73–79

    Google Scholar 

  • Perrier F, Morat P, Yoshino T et al (2004) Seasonal thermal signatures of heat transfer by water exchange in an underground vault. Geophys J Int 158:372–384

    Google Scholar 

  • Pham VN, Boyer D, Chouliaras G et al (1998) Characteristics of electromagnetic noise in the Ioannina region (Greece); a possible origin for so called “Seismic Electric Signal” (SES). Geophys Res Lett 25(12):2229–2232

    Google Scholar 

  • Pham VN, Boyer D, Le Mouel JL et al (1999) Electromagnetic signals generated in the solid Earth by digital transmission of radio-waves as a plausible source for some so-called ‘seismic electric signals’. Phys Earth Planet Interior 114(3–4):141–163

    Google Scholar 

  • Pham VN, Boyer D, Perrier F et al (2001) Generation mechanisms of telluric noises in ULF band: possible sources for the so-called ‘seismic electric signals’ (SES). CR Acad Sci II A 333(5):255–262

    Google Scholar 

  • Pham VN, Boyer D, Chouliaras G et al (2002) Sources of anomalous transient electric signals (ATESs) in the ULF band in the Lamia region (central Greece): electrochemical mechanisms for their generation. Physics Earth Planet Interior 130(3–4):209–233

    Google Scholar 

  • Pinettes P, Bernard P, Cornet F et al (2002) On the difficulty of detecting streaming potentials generated at depth. Pure Appl Geophys 159(11–12):2629–2657

    Google Scholar 

  • Pride S (1994) Governing equations for the coupled electromagnetics and acoustics of porous media. Phys Rev B 50(21):15678–15696

    Google Scholar 

  • Reppert PM, Morgan FD (2003a) Temperature-dependent streaming potentials: 1. Theory. J Geophys Res-Solid 108(B11):2546, doi:10.1029/2002JB001754

    Google Scholar 

  • Reppert PM, Morgan FD (2003b) Temperature-dependent streaming potentials: 2. Laboratory. J Geophys Res-Solid 108(B11):2547, doi:10.1029/2002JB001755

    Google Scholar 

  • Revil A (2002) Comment on “Rapid fluid disruption: a source for self-potential anomalies on volcanoes” by M. J. S. Johnston, J. D. Byerlee, and D. Lockner. J Geophys Res 107(B8):2155, doi:10.1029/2001JB000788

    Google Scholar 

  • Revil A, Pezard PA, Glover PWJ (1999a) Streaming potential in porous media 1. Theory of zeta potentials. J Geophys Res-Solid 104(B9):20021–20032

    Google Scholar 

  • Revil A, Schwaeger H, Cathles LM et al (1999b) Streaming potential in porous media 2. Theory and application to geothermal systems. J Geophys Res-Solid 104(B9):20033–20048

    Google Scholar 

  • Revil A, Finizola A, Sortino F et al (2004) Geophysical investigations at Stromboli volcano, Italy: implications for ground water flow and paroxysmal activity. Geophys J Int 157(1):426–440

    Google Scholar 

  • Rikitake T, Yamazaki Y (1976) Resistivity changes as a precursor of earthquake. J Geomagnet Geoelectr 28(6):497–505

    Google Scholar 

  • Rizzo E, Suski B, Revil A et al (2004) Self-potential signals associated with pumping tests experiments. J Geophys Res-Solid 109(B10):B10203, doi:10.1029/2004JB003049

    Google Scholar 

  • Roberts J, Duba A, Mathez E et al (1999) Carbon enhanced electrical conductivity during fracture of rocks. J Geophys Res 104:737–747

    Google Scholar 

  • Roder H, Buttner R, Zimanowski B (2002) Seismo-electrical effects: experiments and field measurements. Appl Phys Lett 80(2):doi: 10.1063/1.1431693

  • Rooney WJ (1949) Earth-current results at tucson magnetic observatory, 1932–1942. Res Dep of Terr Magn Carnegie Inst Washington, 9, 307 pp

  • Russel RD, Butler KE, Kepic AW et al (1997) Seismoelectric exploration. Leading Edge 16:1611–1615

    Google Scholar 

  • Sagiya T, Miyazaki S, Tada T (2000) Continuous GPS array and present-day crustal deformation of Japan. Pure Appl Geophys 157:2303–2322

    Google Scholar 

  • Sakanaka S, Oshiman N, Sumitomo N (1997) A hybrid calculation method of tectonomagnetic effect using BEM and the surface integral representation of the piezomagnetic potential—two dimensional case study. J Geomagnet Geoelectr 49(1):101–118

    Google Scholar 

  • Sarlis N, Lazaridou M, Kapiris P et al (1999) Numerical model of the selectivity effect and the Delta V/L criterion. Geophys Res Lett 26(21):3245–3248

    Google Scholar 

  • Sasai Y (1980) Application of the elasticity theory of dislocations to tectonomagnetic modeling. Bull Earthq Res I Tokyo 55:387–447

    Google Scholar 

  • Sasai Y (1991) Tectonomagnetic modeling on the basis of the linear piezomagnetic effect. Bull Earthq Res I Tokyo 66:585–722

    Google Scholar 

  • Sasai Y (1994) Piezomagnetic fields produced by dislocation sources. Surv Geophys 15(4):363–382

    Google Scholar 

  • Sasai Y (2001) Tectonomagnetic modeling based on the piezomagnetism: a review. Annali Di Geofisica 44(2):361–368

    Google Scholar 

  • Sasai Y, Ishikawa Y (1997) Seismomagnetic models for earthquakes in the eastern part of Izu Peninsula, Central Japan. Annali Di Geofisica 40(2):463–478

    Google Scholar 

  • Sasai Y, Zlotnicki J, Nishida Y et al (1997) Electromagnetic monitoring of Miyake-jima volcano, Izu-Bonin Arc, Japan: a preliminary report. J Geomagnet Geoelectr 49(11–12):1293–1316

    Google Scholar 

  • Sasai Y, Uyeshima M, Utada H et al (2001a) The 2000 activity of Miyake-jima volcano as inferred from electric and magnetic field observations. J Geogr 110:226–244 (in Japanese with English abstracts)

    Google Scholar 

  • Sasai Y, Zlotnicki J, Nishida Y et al (2001b) Evaluation of electric and magnetic field monitoring of Miyake-jima volcano (Central Japan): 1995–1999. Annali Di Geofisica 44(2):239–260

    Google Scholar 

  • Sasai Y, Uyeshima M, Zlotnicki J et al (2002) Magnetic and electric field observations during the 2000 activity of Miyake-jima volcano, Central Japan. Earth Planet Sci Lett 203(2):769–777

    Google Scholar 

  • Satoh H, Nishida Y, Ogawa Y et al (2001) Crust and upper mantle resistivity structure in the southwestern end of the Kuril Arc as revealed by the joint analysis of conventional MT and network MT data. Earth Planets Space 53(8):829–842

    Google Scholar 

  • Scholz CH, Sykes LR, Aggraval YP (1973) Earthquake prediction—a physical basis. Science 181:803–810

    Google Scholar 

  • Shiozaki I, Nishigaki T, Oshiman N et al (1999) Preliminary report on the resistivity structure derived from the Network MT investigation in the eastern part of Chugoku district, southwestern Honshu, Japan. Rep Fac Eng Tottori Univ 30:49–60 (in Japanese with English abstract)

    Google Scholar 

  • Simpson JJ, Taflove A (2005) Electrokinetic effect of the Loma Prieta earthquake calculated by an entire-Earth FDTD solution of Maxwell’s equations. Geophys Res Lett 32(9):L09302, doi:10.1029/2005GL022601

    Google Scholar 

  • Singer BS (1992) Correction for distortions of magnetotelluric fields: limits of validity of the static approach. Surv Geophys 13:309–340

    Google Scholar 

  • Siripunvaraporn W, Egbert G (2000) An efficient data-subspace inversion method for 2-D magnetotelluric data. Geophysics 65:791–803

    Google Scholar 

  • Siripunvaraporn W, Uyeshima M, Egbert G (2004) Three-dimensional inversion for Network-Magnetotelluric data. Earth Planets Space 56(9):893–902

    Google Scholar 

  • Siripunvaraporn W, Egbert G, Lenbury Y et al (2005) Three-dimensional magnetotelluric inversion: data-space method. Phys Earth Planet Interior 150(1–3):3–14

    Google Scholar 

  • Skordas E, Kapiris P, Bogris N et al (2000) Field experimentation on the detectability of coseismiccoseismic electric signals. Proc Jpn Acad B-Phys 76(4):51–56

    Google Scholar 

  • Slifkin L (1993) Seismic electric signals displacement of charged dislocation. Tectonophysics 224:149–152

    Google Scholar 

  • Slifkin L (1996) A dislocation model for seismic electric signals. In: Lighthill Sir J (ed) A critical review of VAN: earthquake prediction from seismic electric signals. World Scientific, Singapore, pp 97–104

    Google Scholar 

  • Spitzer K (1995) A 3D finite difference algorithm for DC resistivity modeling using conjugate gradient methods. Geophys J Int 123:903–914

    Google Scholar 

  • Stacey FD (1964) The seismomagnetic effect. Pure Appl Geophys 97:146–155

    Google Scholar 

  • Stavrakas I, Anastasiadis C, Triantis D et al (2003) Piezo stimulated currents in marble samples: precursory and concurrent-with-failure signals. Nat Hazards Earth Syst Sci 3:243–247

    Google Scholar 

  • Stuart WD, Banks PO, Sasai Y et al (1995) Piezomagnetic field for Parkfield fault model. J Geophys Res 100(B12):24101–24110

    Google Scholar 

  • Sumitomo N, Oshiman N, Sakanaka S et al (1997) Tectonoelectric signal related with the occurrence of the 1995 Hyogo-ken Nanbu earthquake (M7.2) and preliminary results of electromagnetic observation around the focal area. J Phys Earth 45(2):91–104

    Google Scholar 

  • Takeuchi A, Nagahama H (2002a) Interpretation of charging on fracture or frictional slip surface of rocks. Phys Earth Planet Interior 130:285–291

    Google Scholar 

  • Takeuchi A, Nagahama H (2002b) Surface charging mechanism and scaling law related to earthquakes. J Atmos Electr 22:183–190

    Google Scholar 

  • Tanaka Y (1993) Eruption mechanism as inferred from geomagnetic changes with special attention to the 1989–1990 activity of Aso volcano. J Volcanol Geotherm Res 56(3):319–338

    Google Scholar 

  • Tarits P, Hautot S, Perrier F (2004) Water in the mantle: results from electrical conductivity beneath the French Alps. Geophys Res Lett 31:L06612, doi:10.1029/2003GL019277

    Google Scholar 

  • Teisseyer R (2001) Dislocation dynamics and related electromagnetic excitation. Acta Geophys Pol 49:55–73

    Google Scholar 

  • Torres-Verdin C, Bostick FX (1992a) Implications of the Born approximation for the magnetotelluric problem in three-dimensional environments. Geophysics 57:587–602

    Google Scholar 

  • Torres-Verdin C, Bostick FX (1992b) Principles of spatial surface electric field filtering in magnetotellurics: electromagnetic array profiling (EMAP). Geophysics 57:603–622

    Google Scholar 

  • Tosha T, Matsushima N, Ishido T (2003) Zeta potential measured for an intact granite sample at temperatures to 200 degrees C. Geophys Res Lett 30(6):1295, doi:10.1029/2002GL016608

    Google Scholar 

  • Tournerie B, Chouteau M (1998) Deep Conductivity Structure in Abitibi, Canada, using Long Dipole Magnetotelluric Measurements. Geophys Res Lett 25(13):2317–2320

    Google Scholar 

  • Trique M, Richon P, Perrier F et al (1999) Radon emanation and electric potential variations associated with transient deformation near reservoir lakes. Nature 399(6732):137–141

    Google Scholar 

  • Trique M, Perrier F, Froidefond T et al (2002) Fluid flow near reservoir lakes inferred from the spatial and temporal analysis of the electric potential. J Geophys Res-Solid 107(B10):2239, doi:10.1029/2001JB000482

    Google Scholar 

  • Tuck GJF, Stacey FD, Starkey A (1977) A search for the piezoelectric effect in quartz-bearing rocks. Tectonophysics 39:T7–T11

    Google Scholar 

  • Tyburczy JA, Waff HS (1983) Electrical conductivity of molten basalt and andesite to 25 kilobar pressure—Geophysical significance and implications of geophysical research. J Geophys Res 88:2413–2430

    Google Scholar 

  • Ukawa M, Fujita E, Yamamoto E et al (2000) The 2000 Miyakejima eruption crustal deformation and earthquakes observed by NIED Miyakejima observation network. Earth Planets Space 52:19–26

    Google Scholar 

  • Utada H (2003) Interpretation of time changes in the apparent resistivity observed prior to the 1986 eruption of Izu-Oshima volcano, Japan. J Volcanol Geotherm Res 126:97–107

    Google Scholar 

  • Utada H, Munekane H (2000) On galvanic distortions of regional 3-D MT impedances. Geophys J Int 140:385–398

    Google Scholar 

  • Utada H, Yoshino T, Okubo T et al (1998) Seismic resistivity changes observed at Aburatsubo, central Japan, revisited. Tectonophysics 299(4):317–331

    Google Scholar 

  • Utada H, Neki M, Kagiyama T (2000) A study of annual variations in the geomagnetic total intensity with special attention to detecting volcanomagnetic signals. Earth Planets Space 52(2):91–103

    Google Scholar 

  • Utsugi M, Nishida Y, Sasai Y (2000) Piezomagnetic potentials due to an inclined rectangular fault in a semi-infinite medium. Geophys J Int 140(3):479–492

    Google Scholar 

  • Uyeda S, Park S (2002) Preface. J Geodyn 33:377–378

    Google Scholar 

  • Uyeda S, Nagao T, Orihara Y et al (2000) Geoelectric potential changes: possible precursors to earthquakes. Proc Natl Acad USA 97(9):4561–4566

    Google Scholar 

  • Uyeda S, Hayakawa M, Nagao T et al (2002) Electric and magnetic phenomena observed before the volcano-seismic activity 2000 in the Izu Island Region, Japan. Proc Natl Acad USA 99(11):7352–7355

    Google Scholar 

  • Uyeshima M, Kinoshita M, Iino H et al (1989) Earthquake prediction research by means of telluric potential monitoring, Progress Report No. 2: preliminary study on Teshikaga channel 2 signals and the seismicity in the region off Kushiro. Bull Earthq Res I Tokyo 64:487–515

    Google Scholar 

  • Uyeshima M, Kanda W, Nagao T et al (1998). Directional properties of VAN’s SES and ULF MT signals at Ioannina, Greece. Phys Earth Planet Interior 105(3–4):153–166

    Google Scholar 

  • Uyeshima M, Utada H, Nishida Y (2001) Network-magnetotelluric method and its first results in central and eastern Hokkaido, NE Japan. Geophys J Int 146(1):1–19

    Google Scholar 

  • Uyeshima M, Ichiki M, Fujii I et al (2002) Netowork-MT survey in Japan to determine nation-wide deep electrical conductivity structure. In: Fujinawa Y, Yoshida A (eds) Seismotectonics in convergent plate boundary. TERRAPUB, Tokyo, pp 107–121

    Google Scholar 

  • Vallianatos F, Triantis D, Tzanis A et al (2004) Electric earthquake precursors: from laboratory results to field observations. Phys Chem Earth 29(4–9):339–351

    Google Scholar 

  • Varotsos P (2005) The physics of seismic electric signals. TERRAPUB, Tokyo, Japan

    Google Scholar 

  • Varotsos P, Alexopoulos K (1984a) Physical-properties of the variations of the electric-field of the earth preceding earthquakes.1. Tectonophysics 110(1–2):73–98

    Google Scholar 

  • Varotsos P, Alexopoulos K (1984b) Physical-properties of the variations of the electric-field of the earth preceding earthquakes.2. Determination of Epicenter and Magnitude Tectonophysics 110(1–2):99–125

    Google Scholar 

  • Varotsos P, Alexopoulos K (1986) Thermodynamics of point defects and their relation with bulk properties. North Holland, Amsterdam

    Google Scholar 

  • Varotsos P, Bogris NG, Kyritsis A (1992) Comments on the depolarization currents stimulated by variations of temperature or pressure. J Phys Chem Solids 53(8):1007–1011

    Google Scholar 

  • Varotsos P, Alexopoulos K, Lazaridou M (1993) Latest aspects of earthquake prediction in greece based on seismic electric signals.2. Tectonophysics 224(1–3):1–37

    Google Scholar 

  • Varotsos P, Hadjicontis V, Nowick AS (2001) The physical mechanism of seismic electric signals. Acta Geophys Pol 49:415–421

    Google Scholar 

  • Verier V, Rochette P (2002) Estimating peak currents at ground lightning impacts using remanent magnetization. Geophys Res Lett 29(18):1867, doi:10.1029/2002GL015207

    Google Scholar 

  • Viljanen A, Pirjola R (1994) Geomagnetically induced currents in the finnish high-voltage power-system— geophysical review. Surv Geophys 15(4):383–408

    Google Scholar 

  • Wannamaker PE, Stodt JA, Rijo L (1986) Two-dimensional topographic responses in magnetotelluric model using finite elements. Geophysics 51:2131–2144

    Google Scholar 

  • Warwick JW, Stoker C, Meyer TR (1982) Radio emission associated with rock fracture: possible application to the great Chilean earthquake of May 22, 1960. J Geophys Res 87:2851–2859

    Google Scholar 

  • Weaver JT, Agarwal AK, Lilley FEM (2000) Characterization of the magnetotelluric tensor in terms of its invariants. Geophys J Int 141:321–336

    Google Scholar 

  • Wrumstich B, Morgan FD (1994) Modelling of streaming potential response by oil well pumping. Geophysics 59:46–56

    Google Scholar 

  • Yamaguchi S, Kobayashi Y, Oshiman N et al (1999) Preliminary report on regional resistivity variation inferred from the Network MT investigation in the Shikoku district, southwestern Japan. Earth Planets Space 51(3):193–203

    Google Scholar 

  • Yamazaki Y (1965) Electrical conductivity of saturated rocks (The 1st paper), Laboratory experiments on sedimentary rocks. Bull Earthq Res I Tokyo 43:783–802

    Google Scholar 

  • Yamazaki Y (1966) Electrical conductivity of strained rocks (The 2nd paper), Further experiments on sedimentary rocks. Bull Earthq Res I Tokyo 44:1553–1570

    Google Scholar 

  • Yamazaki Y (1967) Electrical conductivity of strained rocks (The 3rd paper), A resistivity variometer. Bulletin of the Earthquake Research Institute-University of Tokyo 45:849–860

    Google Scholar 

  • Yamazaki Y (1975) Precursory and coseismic resistivity changes. Pure Appl Geophys 113(1–2):219–227

    Google Scholar 

  • Yoshida S (2001) Convection current generated prior to rupture in saturated rocks. J Geophys Res-Solid 106(B2):2103–2120

    Google Scholar 

  • Yoshida S, Ogawa T (2004) Electromagnetic emissions from dry and wet granite associated with acoustic emissions. J Geophys Res 109:B09204, doi:10.1029/2004JB003092

    Google Scholar 

  • Yoshida S, Uyeshima M, Nakatani M (1997) Electric potential changes associated with slip failure of granite: preseismic and coseismic signals. J Geophys Res-Solid 102(B7):14883–14897

    Google Scholar 

  • Yoshida S, Clint OC, Sammonds PR (1998) Electric potential changes prior to shear fracture in dry and saturated rocks. Geophys Res Lett 25:1577–1580

    Google Scholar 

  • Yukutake T, Yoshino T, Utada H et al (1990) Changes in the electrical resistivity if the central cone, Mihara-yama, of Oshima Volcano observed by a direct current method. J Geomagnet Geoelectr 42:151–169

    Google Scholar 

  • Zhan Z (1989) Investigations of tectonomagnetic phenomena in China. Phys Earth Planet Interior 57:11–22

    Google Scholar 

  • Zhao Y, Qian F (1994) Geoelectric precursors to strong earthquakes in China. Tectonophysics 233:99–113

    Google Scholar 

  • Zlotnicki J, Nishida Y (2003) Review on morphological insights of self-potential anomalies on volcanoes. Surveys in Geophysics 24(4):291–338

    Google Scholar 

  • Zlotnicki J, Pozzi JK, Cornet FH (1981) Investigation of induced magnetization variations caused by triaxial stresses. J Geophys Res 86:11899–11909

    Google Scholar 

  • Zlotnicki J, Michel S, Ammen C (1994) Anomalies de polarization spontanee et systems convectifs sur le volcan du Piton de la Gournaise (Ile de la Reunion, France). CR Acad Sci, Paris 318:1325–1331

    Google Scholar 

  • Zlotnicki J, Sasai Y, Yvetot P et al (2003) Resistivity and self-potential changes associated with volcanic activity: the July 8, 2000 Miyake-jima eruption (Japan). Earth Planet Sci Lett 205(3–4):139–154

    Google Scholar 

  • Zlotnicki J, Le Mouel JL, Kanwar R et al (2006). Ground-based electromagnetic studies combined with remote sensing based on Demeter mission: a way to monitor active faults and volcanoes. Planet Space Sci 54(5):541–557

    Google Scholar 

Download references

Acknowledgements

First of all, I acknowledge the IAGA working group 1.2 for providing me an opportunity to present this review paper at the 18th Electromagnetic Induction Workshop at El Vendrell, Spain. I also want to express my sincere thanks to all the contributors to this review. Critical reviews from A. Martí and an anonymous reviewer, as well as kind help from J. Weaver (a guest editor of this issue), have significantly enhanced the clarity and quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Uyeshima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uyeshima, M. EM Monitoring of Crustal Processes Including the Use of the Network-MT Observations. Surv Geophys 28, 199–237 (2007). https://doi.org/10.1007/s10712-007-9023-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-007-9023-x

Keywords

Navigation