Skip to main content
Log in

Relationship between 5′ UTR length and gene expression pattern in chicken

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The chicken (Gallus gallus) is an important model organism that bridges the evolutionary gap between mammals and non-amniote vertebrates. Here, we carried out a systematic study of the relationship between 5′ UTR length and gene expression pattern in the chicken genome. We found that gene 5′ UTRs lengths show a negative correlation with gene expression levels and gene expression breadths significantly. The relevance of 5′ UTR length to expression pattern can not be a consequence of transcription-associated mutations. We also found that gene 5′ UTR length shows a weakly positive correlation with gene tissue specificity. Another intriguing finding is that genes with 5′ UTR length <30 bp have highest expression level, highest expression breadth, and lowest tissue specificity in chicken. We argued that selection is likely involved in shaping 5′ UTR length in the chicken genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akashi H (2001) Gene expression and molecular evolution. Curr Opin Genet Dev 11:660–666

    Article  PubMed  CAS  Google Scholar 

  • Bruno VM, Wang Z, Marjani SL, Euskirchen GM, Martin J, Sherlock G, Snyder M (2010) Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq. Genome Res 20:1451–1458

    Article  PubMed  CAS  Google Scholar 

  • Carmel L, Koonin E (2009) A universal nonmonotonic relationship between gene compactness and expression level in muticellular eukaryotes. Genome Biol Evol 1:382–390

    Article  PubMed  Google Scholar 

  • Castillo-Davis CI, Mekhedov SL, Hartl DL, Koonin EV, Kondrashov FA (2002) Selection for short introns in highly expressed genes. Nat Genet 31:415–418

    PubMed  CAS  Google Scholar 

  • Chen CH, Lin HY, Pan CL, Chen FC (2011) The plausible reason why the length of 5′ untranslated region is unrelated to organismal complexity. BMC Res Notes 4:312

    Article  PubMed  CAS  Google Scholar 

  • Comeron JM (2004) Selective and mutational patterns associated with gene expression in humans: influences on synonymous composition and intron presence. Genetics 67(3):1293–1304

    Article  Google Scholar 

  • David L, Huber W, Granovskaia M, Toedling J, Palm CJ, Bofkin L, Jones T, Davis RW, Steinmetz LM (2006) A high-resolution map of transcription in the yeast genome. Proc Natl Acad Sci 103:5320–5325

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg E, Levanon EY (2003) Human housekeeping genes are compact. Trends Genet 19(7):362–365

    Article  PubMed  CAS  Google Scholar 

  • Flicek P, Amode MR, Barrell D et al (2011) Ensembl. Nucleic Acids Res 39:D800–D806

    Article  PubMed  CAS  Google Scholar 

  • Holm S (1979) A simple sequentially rejective Bonferroni test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Hughes MJ, Andrews DW (1997) A single nucleotide is a sufficient 5′untranslated region for translation in an eukaryotic in vitro system. FEBS Lett 414:19–22

    Article  PubMed  CAS  Google Scholar 

  • Hurowitz EH, Brown PO (2003) Genome-wide analysis of mRNA lengths in Saccharomyces cerevisiae. Genome Biol 5:R2

    Article  PubMed  Google Scholar 

  • Iida Y, Kanagu D (2000) Quantification analysis of translation initiation signal in vertebrate mRNAs: effect of nucleotides at positions +4(−) +6 upon efficiency of translation initiation. Nucleic Acids Symp Ser 44:77–78

    Article  PubMed  Google Scholar 

  • International Chicken Genome Sequencing Consortium (ICGSC) (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716

    Article  Google Scholar 

  • International Chicken Polymorphism Map Consortium (ICPMC) (2004) A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 432:717–725

    Google Scholar 

  • Iwabe N, Miyata T (2001) Overlapping genes in parasitic protist Giardia lamblia. Gene 280:16–167

    Article  Google Scholar 

  • Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1996) Interpreting cDNA sequences: some insights from studies on translation. Mamm Genome 7(8):563–574

    Article  PubMed  CAS  Google Scholar 

  • Li SW, Feng L, Niu DK (2007) Selection for the miniaturization of highly expressed genes. Biochem Biophy Res Commun 360(3):586–592

    Article  CAS  Google Scholar 

  • Lin Z, Li WH (2012) Evolution of 5′untranslated region length and gene expression reprogramming in yeasts. Mol Biol Evol 29:81–89

    Article  PubMed  CAS  Google Scholar 

  • Liston DR, Johnson PJ (1999) Analysis of a ubiquitous promoter element in a primitive eukaryote: early evolution of the initiator element. Mol Cell Biol 19:2380–2388

    PubMed  CAS  Google Scholar 

  • Lynch M, Scofield DG, Hong X (2005) The evolution of transcription-initiation sites. Mol Biol Evol 22:1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Maicas E, Shago M, Friesen JD (1990) Translation of the Saccharomyces cerevisiae tcm1 gene in the absence of a 5′untranslated leader. Nucleic Acids Res 18:5823–5828

    Article  PubMed  CAS  Google Scholar 

  • Meijer HA, Thomas AA (2002) Control of eukaryotic protein synthesis by upstream open reading frames in the 5′- untranslated region of an mRNA. Biochem J 367:1–11

    Article  PubMed  CAS  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349

    Article  PubMed  CAS  Google Scholar 

  • Niu DK, Hou WR, Li SW (2005) mRNA-mediated intron losses: evidence from extraordinarily large exons. Mol Biol Evol 22:1475–1481

    Article  PubMed  CAS  Google Scholar 

  • Pesole G, Mignone F, Gissi C, Grillo G, Licciulli F, Liuni S (2001) Structural and functional features of eukaryotic mRNA untranslated regions. Gene 276: 73–81

    Google Scholar 

  • Radford A, Parish JH (1997) The genome and genes of Neurospora crassa. Fungal Genet Biol 21:258–266

    Article  PubMed  CAS  Google Scholar 

  • Rao YS, Chai XW, Wang ZF, Nie QH, Zhang XQ (2013) Impact of GC content on gene expression pattern in chicken. Genet Sel Evol 45:9

    Google Scholar 

  • Rao YS, Wang ZF, Zhou M, Shen X, Xia MN, Zhang XQ (2007) Comparative study of SNP diversity and calculation of the effective size of population in chicken. Hereditas (Beijing) 29(9):1083–1088

    Article  CAS  Google Scholar 

  • Rao YS, Wang ZF, Chai XW, Wu GZ, Zhou M, Nie QH, Zhang XQ (2010) Selection for the compactness of highly expressed genes in Gallus gallus. Biol Direct 5:35

    Article  PubMed  Google Scholar 

  • Resch AM, Ogurtsov AY, Rogozin IB, Shabalina SA, Koonin EV (2009) Evolution of alternative and constitutive regions of mammalian 5′ UTRs. BMC Genomics 10:162

    Article  PubMed  Google Scholar 

  • Reuter M, Engelsta J, Fontanillas P, Hurst LD (2008) A test of the null model for 5′ utr evolution based on gc content. Mol Biol Evol 25:801–804

    Article  PubMed  CAS  Google Scholar 

  • Urrutia AO, Hurst LD (2001) Codon usage bias covaries with expression breadth and the rate of synonymous evolution in humans, but this is not evidence for selection. Genetics 159:1191–1199

    PubMed  CAS  Google Scholar 

  • Vinogradov AE (2006) Genome design’ model: evidence from conserved intronic sequence in human- mouse comparison. Genome Res 16:347–354

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhao Y, Wong K, Ehlers P, Kohara Y, Jones S, Marra MA, Holt RA, Moerman DG, Hansen D (2009) Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE. BMC Genomics 10:213

    Article  PubMed  Google Scholar 

  • Yanai I, Benjamin H, Shmoish M (2005) Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21:650–659

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Morris OD, Chang R et al (2004) The functional landscape of mouse gene expression. J Biol 3:21

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are particularly grateful to three reviewers for critical reading and important comments on the manuscript. This work was supported by the Science and Technology Program of Jiangxi Education Department, China, Project No. GJJ12658 and Jiangxi provincial natural science fund project, China, Project No. 2010GZN0021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Q. Zhang.

Additional information

You S. Rao and Zhang F. Wang contributed equally to this work and co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 32 kb)

Supplementary material 2 (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, Y.S., Wang, Z.F., Chai, X.W. et al. Relationship between 5′ UTR length and gene expression pattern in chicken. Genetica 141, 311–318 (2013). https://doi.org/10.1007/s10709-013-9730-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-013-9730-9

Keywords

Navigation