Skip to main content
Log in

Physics of Dark Energy Particles

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We consider the astrophysical and cosmological implications of the existence of a minimum density and mass due to the presence of the cosmological constant. If there is a minimum length in nature, then there is an absolute minimum mass corresponding to a hypothetical particle with radius of the order of the Planck length. On the other hand, quantum mechanical considerations suggest a different minimum mass. These particles associated with the dark energy can be interpreted as the “quanta” of the cosmological constant. We study the possibility that these particles can form stable stellar-type configurations through gravitational condensation, and their Jeans and Chandrasekhar masses are estimated. From the requirement of the energetic stability of the minimum density configuration on a macroscopic scale one obtains a mass of the order of 1055 g, of the same order of magnitude as the mass of the universe. This mass can also be interpreted as the Jeans mass of the dark energy fluid. Furthermore we present a representation of the cosmological constant and of the total mass of the universe in terms of ‘classical’ fundamental constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Riess, A.G., et al.: Astron. J. 116, 109 (1998)

    Article  Google Scholar 

  2. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. de Bernardis, P., et al.: Nature 404, 995 (2000)

    Article  Google Scholar 

  4. Hanany, S., et al.: Astrophys. J. 545, L5 (2000)

    Article  ADS  Google Scholar 

  5. Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  6. Padmanabhan, T.: Phys. Rep. 380, 235 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Mak, M.K., Dobson Jr., P.N., Harko, T.: Mod. Phys. Lett. A 15, 2153 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Böhmer, C.G.: Gen. Relativ. Gravit. 36, 1039 (2004)

    Article  MATH  ADS  Google Scholar 

  9. Böhmer, C.G.: Ukr. J. Phys. 50, 1219 (2005)

    Google Scholar 

  10. Balaguera-Antolinez, A., Böhmer, C.G., Nowakowski, M.: Int. J. Mod. Phys. D 14, 1507 (2005)

    Article  MATH  ADS  Google Scholar 

  11. Buchdahl, H.A.: Phys. Rev. 116, 1027 (1959)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Balaguera-Antolinez, A., Böhmer, C.G., Nowakowski, M.: Class. Quantum Gravity 23, 485 (2006)

    Article  MATH  ADS  Google Scholar 

  13. Wesson, P.S.: Mod. Phys. Lett. A 19, 1995 (2004)

    Article  ADS  Google Scholar 

  14. Aldrovandi, R., Beltran Almeida, J.P., Pereira, J.G.: arXiv:gr-qc/0702065 (2007)

  15. Aldrovandi, R., Beltran Almeida, J.P., Mayor, C.S.O., Pereira, J.G.: arXiv:0709.3947 (2007)

  16. Aldrovandi, R., Beltran Almeida, J.P., Mayor, C.S.O., Pereira, J.G.: arXiv:0710.0610 (2007)

  17. Aldrovandi, R., Beltran Almeida, J.P., Pereira, J.G.: Class. Quantum Gravity 24, 1385 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Böhmer, C.G., Harko, T.: Phys. Lett. B 630, 73 (2005)

    ADS  Google Scholar 

  19. Böhmer, C.G., Harko, T.: Class. Quantum Gravity 23, 6479 (2006)

    Article  MATH  ADS  Google Scholar 

  20. Böhmer, C.G., Harko, T.: Gen. Relativ. Gravit. 39, 757 (2007)

    Article  MATH  ADS  Google Scholar 

  21. Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  22. Birrel, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  23. Batista, A.B., Fabris, J.C., Houndjo, S.: arXiv:0710.0999 (2007)

  24. Wesson, P.S.: Found. Phys. Lett. 19, 285 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Trinczek, M., et al.: Phys. Rev. Lett. 90, 012501 (2003)

    Article  ADS  Google Scholar 

  26. Peccei, R.D., Sola, J., Wetterich, C.: Phys. Lett. B 195, 183 (1987)

    Article  ADS  Google Scholar 

  27. Wetterich, C.: Nucl. Phys. B 302, 668 (1988)

    Article  ADS  Google Scholar 

  28. Sola, J.: Phys. Lett. B 228, 317 (1989)

    Article  ADS  Google Scholar 

  29. Sola, J.: Int. J. Mod. Phys. A 5, 4225 (1990)

    Article  ADS  Google Scholar 

  30. Shapiro, I.L., Sola, J.: Phys. Lett. B 475, 236 (2000)

    Article  ADS  Google Scholar 

  31. Dirac, P.A.M.: Proc. R. Soc. A 333, 439 (1974)

    Article  ADS  Google Scholar 

  32. Mazur, P.O., Mottola, E.: Proc. Natl. Acad. Sci. 101, 9545 (2004)

    Article  ADS  Google Scholar 

  33. Chapline, G.: arXiv:astro-ph/0503200 (2005)

  34. Lobo, F.S.N.: Class. Quantum Gravity 23, 1525 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Böhmer, C.G., Harko, T.: J. Cosmol. Astropart. Phys. 06, 025 (2007)

    Article  ADS  Google Scholar 

  36. Fukuyama, T., Morikawa, M., Tatekawa, T.: arXiv:0705.3091 (2007)

  37. Shapiro, S.L., Teukolsky, S.A.: Black Holes, White Dwarfs, and Neutron Stars. Wiley, New York (1983)

    Google Scholar 

  38. Katz, J., Lynden-Bell, D., Israel, W.: Class. Quantum Gravity 5, 971 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Harko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhmer, C.G., Harko, T. Physics of Dark Energy Particles. Found Phys 38, 216–227 (2008). https://doi.org/10.1007/s10701-007-9199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-007-9199-4

Keywords

Navigation