Skip to main content
Log in

Air-breathing behavior and physiological responses to hypoxia and air exposure in the air-breathing loricariid fish, Pterygoplichthys anisitsi

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Hypoxic water and episodic air exposure are potentially life-threatening conditions that fish in tropical regions can face during the dry season. This study investigated the air-breathing behavior, oxygen consumption, and respiratory responses of the air-breathing (AB) armored catfish Pterygoplichthys anisitsi. The hematological parameters and oxygen-binding characteristics of whole blood and stripped hemoglobin and the intermediate metabolism of selected tissue in normoxia, different hypoxic conditions, and after air exposure were also examined. In normoxia, this species exhibited high activity at night and AB behavior (2–5 AB h−1). The exposure to acute severe hypoxia elicited the AB behavior (4 AB h−1) during the day. Under progressive hypoxia without access to the water surface, the fish were oxyregulators with a critical O2 tension, calculated as the inspired water O2 pressure, as 47 ± 2 mmHg. At water O2 tensions lower than 40 mmHg, the fish exhibited continuous apnea behavior. The blood exhibited high capacity for transporting O2, having a cathodic hemoglobin component with a high Hb–O2 affinity. Under severe hypoxia, the fish used anaerobic metabolism to maintain metabolic rate. Air exposure revealed physiological and biochemical traits similar to those observed under normoxic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alton LA, White CR, Seymour RS (2007) Effect of aerial O2 partial pressure on bimodal gas exchange and air-breathing behaviour in Trichogaster leeri. J Exp Biol 210:2311–2319

    Article  PubMed  Google Scholar 

  • Belão TC (2010) Respostas cardiorrespiratórias do teleósteo de respiração aérea, Clarias gariepinus exposto a hipóxia gradual. Ms thesis. Universidade Federal de São Carlos, São Carlos, SP, Brazil

  • Benesch RE, Benesch R, Yung S (1973) Equations for the spectrophotometric analysis of hemoglobin mixtures. Analyt Biochem 55:245–248

    Article  PubMed  CAS  Google Scholar 

  • Bicudo JEPW, Johansen K (1979) Respiratory gas exchange in the airbreathing fish, Synbranchus marmoratus. Env Biol Fish 4:55–64

    Article  Google Scholar 

  • Bidinotto PM, Moraes G, Souza RHS (1997) Hepatic glycogen in eight tropical fresh w, ater teleost fish: a procedure for field determinations of micro samples. Bol Técn CEPTA 10:53–61

    Google Scholar 

  • Caldwell CA, Hinshaw J (1994) Physiological and haematological responses in rainbow trout subjected to supplemental dissolved oxygen in fish culture. Aquaculture 126:183–193

    Article  Google Scholar 

  • CETESB (Companhia de Tecnologia de Saneamento Ambiental) (2010) Relatório de qualidade das águas interiores do estado de São Paulo, São Paulo

  • Chapman LJ, McKenzie DJ (2009) Behavioral responses and ecological consequences. In: Richards JG, Farrel AP, Brauner CJ (eds), Fish physiology. Hypoxia, v 27, Academic Press, London, pp 24–77

  • Chippari-Gomes AR, Gomes LC, Lopes NP (2005) Metabolic adjustments in two Amazonian cichlids exposed to hypoxia and anoxia. Comp Biochem Physiol B 141:347–355

    Article  PubMed  CAS  Google Scholar 

  • Clementi ME, Condò SG, Castagnola M, Giardina B (1994) Hemoglobin function under extreme life conditions. Eur J Biochem 223:309–317

    Article  PubMed  CAS  Google Scholar 

  • Cruz AL (2007) O comportamento respiratório e a cascata de O2 no cascudo de respiração bimodal Pterygoplichthys anisitsi (Teleostei: Loricariidae). Ph D Thesis. Universidade Federal de São Carlos, São Carlos, SP, Brazil

  • Cruz AL, Langeani F (2000) Comportamento reprodutivo do cascudo Liposarcus anisitsi (Eigenmann & Kennedy, 1903) (Ostariophysi: Loricariidae: Hypostominae) em cativeiro. Comun Mus Ciênc Tecnol PUCRS 13:109–115

    Google Scholar 

  • Cruz AL, Pedretti ACE, Fernandes MN (2009) Stereological estimation of the surface area and oxygen diffusing capacity of the respiratory stomach of the air-breathing armored catfish Pterygoplichthys anisitsi (Teleostei: Loricariidae). J Morphol 270:601–614

    Article  PubMed  Google Scholar 

  • Dejours P (1981) Principles of comparative respiratory physiology. Elsevier, North-Holland Biomedical Press, Amsterdam, New York, Oxford

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Fago A, Carratore V, Di Prisco G, Feuerlein RJ, Weber RE, Sottrup-Jensen L (1995) The cathodic hemoglobin of Anguilla anguilla. Amino acid sequence and oxygen equilibria of a reverse Bohr effect hemoglobin with high oxygen affinity and high phosphate sensitivity. J Biol Chem 270:18897–18902

    Article  PubMed  CAS  Google Scholar 

  • Fernandes MN, Rantin FT (1989) Respiratory responses of Oreochromis niloticus (Pisces, Cichlidae) to environmental hypoxia under different thermal conditions. J Fish Biol 35:509–519

    Article  Google Scholar 

  • Fernandes MN, Rantin FT (1994) Relantionships between oxygen availability and metabolic cost of breathing in Nile tilapia (Oreochromis niloticus): aquacultural consequences. Aquaculture 127:339–346

    Article  Google Scholar 

  • Fernandes MN, Sanchez JR, Matsuzaki M, Panepucci L, Rantin FT (1999) Aquatic respiration in facultative air-breathing fish: effects of temperature and hypoxia. In: Val AL, Almeida-Val VMF (eds) Biology of tropical fishes. Manaus, INPA, pp 341–353

    Google Scholar 

  • Gee JH (1980) Respiratory patterns and antipredator responses in the central mudminnow, Umbra limi, a continuous, facultative, air-breathing fish. Can J Zool 58:819–827

    Article  Google Scholar 

  • Gee JH, Graham JB (1978) Respiratory and hidrostatic functions of the intestine of the catfishes Hoplosternum thoracatum and Brochis splendens (Callichthyidae). J Exp Biol 74:1–16

    PubMed  CAS  Google Scholar 

  • Giardina B, Amiconi G (1981) Measurement of binding of gaseous and nongaseous ligands to hemoglobins by conventional spectrophotometric procedures. Methods Enzymol 76:417–427

    Article  PubMed  CAS  Google Scholar 

  • Graham JB (1983) The transition to air breathing in fishes. II. Effects of hypoxia acclimation on the bimodal gas exchange of Ancistrus chagresi (Loricariidae). J Exp Biol 102:157–173

    Google Scholar 

  • Graham JB (1997) Air-breathing fishes: evolution, diversity, and adaptation. Academic Press, San Diego

    Google Scholar 

  • Graham JB, Baird TA (1984) The transition to air breathing in fishes. III. Effects o body size and aquatic hypoxia on the aerial gas exchange of the swamp eel Synbranchus marmoratus. J Exp Biol 108:357–375

    Google Scholar 

  • Graham JB, Wegner NC (2010) Breathing air in water and in air: the air-breathing fishes. In: Nilsson GE (ed) Respiratory Physiology of Vertebrates. Life with and without oxygen. Cambridge University Press, Cambridge, pp 174–221

  • Graham JB, Baird TA, Stockmann W (1987) The transition to air breathing in fishes. IV. Impact of branchial specializations for an air breathing on the aquatic respiratory mechanisms and ventilatory costs of the swamp eel Synbranchus marmoratus. J Exp Biol 129:83–106

    Google Scholar 

  • Harrower JR, Brown CH (1972) Blood lactic acid. A micro method adapted to field collection of microliter samples. J Appl Physiol 32:224–228

    Google Scholar 

  • Hebert NA, Wells RMG (2001) The anaerobic physiology of the air-breathing blue gourami, Trichogaster trichopterus, necessitates behavioural regulation of breath-hold limits during hypoxic stress and predatory challenge. J Comp Physiol B 171:603–612

    Article  Google Scholar 

  • Hochachka PW, Lutz PL (2001) Mechanism, origin, and evolution of anoxia tolerance in animals. Comp Biochem Physiol B 130:435–459

    Article  PubMed  CAS  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, Oxford

    Google Scholar 

  • Hughes GM, Singh BH (1971) Gas exchange in air and water in an air breathing catfish, Saccobranchus (Heteropneustes) fossilis. J Comp Biol 55:667–682

    CAS  Google Scholar 

  • Ip YK, Lim CB, Chew SF, Wilson JM, Randall DJ (2001) Partial aminoacid catabolism leading to the formation of alanine in Periophthalmodon schlosseri: a strategy that facilitates the use of aminoacids as an energy source during locomotory activity on land. J Exp Biol 204:1615–1624

    PubMed  CAS  Google Scholar 

  • Jensen FB (2004) Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Acta Physiol Scand 182:215–227

    Article  PubMed  CAS  Google Scholar 

  • Johansen K, Mangum CP, Lykkeboe G (1978) Respiratory properties of the blood of Amazon fishes. Can J Zool 56:898–906

    Article  CAS  Google Scholar 

  • Karim MR, Sekini M, Ukita M (2003) A model of fish preference and mortality under hypoxic water in the coastal environment. Mar Pollut Bull 47:25–29

    Article  PubMed  CAS  Google Scholar 

  • Lu GD (1939) The metabolism of piruvic acid in normal and vitamin B- deficient state. I. A rapid specific and sensitive method for the estimation of blood pyruvate. Biochem J 33:249–254

    PubMed  CAS  Google Scholar 

  • MacCormack TJ, McKinley RS, Roubach R, Almeida-Val VMF, Val AL, Driedzic WR (2003) Changes in ventilation, metabolism, and behaviour, but not bradycardia, contribute to hypoxia survival in two species of Amazonian armoured catfish. Can J Zool 81:272–280

    Article  Google Scholar 

  • MacCormack TJ, Lewis JM, Almeida-Val VMF (2006) Carbohydrate management, anarobic metabolism and adenosine levels in the armoured catfish Liposarcus pardalis (Castelnau) during hypoxia. J Exp Zool A 305:363–375

    Article  Google Scholar 

  • Mattias AT, Perna SA, Moron SE, Rodrigues JAO, Fernandes MN (1996) Comparação entre a estrutura morfológica e a morfometria das brânquias do cascudo Hypostomus regani e Hypostomus plecostomus (Loricariidae). Anais VII Sem Reg Ecol 7:223–236

    Google Scholar 

  • Mattias AT, Rantin FT, Fernandes MN (1998) Gill respiratory parameters during progressive hypoxia in the facultative air-breathing fish, Hypostomus regani (Loricariidae). Comp Biochem Physiol A 120:311–315

    Google Scholar 

  • Milsson WK (1991) Intermittent breathing in vertebrates. Annu Rev Physiol 53:87–105

    Article  Google Scholar 

  • Moraes G, Oliveira MA, Rantin FT (1996) The metabolic pattern changes of Hoplias malabaricus from normoxia to hypoxia conditions. Rev Bras Biol 56:191–196

    Google Scholar 

  • Moraes G, Altran AE, Avilez IM, Barbosa CC, Bidinotto PM (2005) Metabolic adjustments during semi-aestivation of the marble eel (Synbranchus marmoratus), a facultative air-breathing fish. Braz J Biol 65:305–312

    Google Scholar 

  • Nelson JA, Rios FS, Sanches JR, Fernandes MN, Rantin FT (2007) Environmental influences on the respiratory physiology and gut chemistry of a facultatively air-breathing, tropical herbivorous fish Hypostomus regani (Ihering, 1905). In: Fernandes MN, Rantin FT, Glass ML, Kapoor BG (eds) Fish respiration and environment, Science Publisher, Enfield, Jersey, Plymouth, pp 191–218

  • Nikinmaa M (1997) Oxygen and carbon dioxide transport in vertebrate erythrocytes: an evolutionary change in the role of membrane transport. J Exp Biol 200:369–380

    PubMed  CAS  Google Scholar 

  • Nikinmaa M (2002) Oxygen-dependent cellular functions: why fishes and their aquatic environment are a prime choice of study. Comp Biochem Physiol A 133:1–16

    Google Scholar 

  • Oliveira RD, Lopes JM, Sanches JR, Kalinin AL, Glass ML, Rantin FT (2004) Cardiorespiratory responses of the facultative air breathing fish jeju, Hoplerythrinus unitaeniatus (Teleostei, Erythrinidae), exposed to graded ambient hypoxia. Comp Biochem Physiol A 139:479–485

    Article  CAS  Google Scholar 

  • Perna SA, Fernandes MN (1996) Gill morphometry of the facultative air-breathing loricariid fish, Hypostomus plecostomus (Walbaum) with special emphasis to aquatic respiration. Fish Physiol Biochem 15:213–220

    Article  CAS  Google Scholar 

  • Rantin FT, Kalinin AL, Glass ML, Fernandes MN (1992) Respiratory responses to hypoxia in relation to mode of life of two erythrinid species (Hoplias malabaricus and Hoplias lacerdae). J Fish Biol 41:805–812

    Article  Google Scholar 

  • Smithies O (1955) Zone electrophoresis in starch gels: group variation in the serum proteins of normal human adults. Biochem J 61:629–641

    PubMed  CAS  Google Scholar 

  • Smithies O (1959) An improved procedure for starch gel electrophoresis. Biochem J 71:585–587

    PubMed  CAS  Google Scholar 

  • Souza RHS, Soncini R, Glass ML, Sanches JR, Rantin FT (2001) Ventilation, gill perfusion and blood gases in dourado, Salminus maxillosus Valenciennes (Teleostei, Characidae), exposed to graded hypoxia. J Comp Physiol B 171:483–489

    Google Scholar 

  • Takasusuki J, Fernandes MN, Severi W (1998) The occurrence of aerial respiration in Rhinelepis strigosa during progressive hypoxia. J Fish Biol 52:369–379

    Google Scholar 

  • Tamburrini M, Verde C, Olianas A, Giardina B, Corda M, Sanna MT, Fais A, Deianna AM, Di Prisco G, Pellegrini M (2001) The hemoglobin system of the brown moray Gymnothorax unicolor. Eur J Biochem 268:4104–4111

    Article  PubMed  CAS  Google Scholar 

  • Trinder P (1969) Determination of glucose in blood using glucose oxidase with the alternative oxygen acceptor. Analyt Clinic Biochem 6:24–25

    CAS  Google Scholar 

  • Val AL, Schwantes AR, Schwantes MLB, De Luca PH (1981) Amido hidrolisado em milho como suporte eletroforético. Ciênc Cult 33:992–996

    Google Scholar 

  • van den Thillart GEEJM, van Waarde A (1985) Teleosts in hypoxia: aspects of anaerobic metabolism. Mol Physiol 8:393–409

    Google Scholar 

  • van Hesswijk JCF, van Pelt J, van den Thillart GEEJM (2005) Free fatty acid metabolism in the air-breathing African catfish Clarias gariepinus during asphyxia. Comp Biochem Physiol A 141:15–21

    Article  Google Scholar 

  • Wang T, Hicks JW (2002) An integrative model to predict maximum O2 uptake in animals with central vascular shunts. Zoology 105:45–53

    Article  PubMed  Google Scholar 

  • Weber RE, Ostojic H, Fago A (2002) Novel mechanism for high-altitude adaptation in haemoglobin of the Andean frog Telmatobius peruvianus. Am J Physiol R 283:1052–1060

    Google Scholar 

  • Weibel ER, Taylor CR, Hoppeller H (1992) Variations in function and designed: testing by symmorphosis in the respiratory system. Respir Physiol 87:325–348

    Article  PubMed  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

This study was supported by the grants from the Brazilian research funding institutions National Council of Technological and Scientific Development (CNPq), Foundation for Supporting Research in the State of São Paulo (FAPESP), and Coordination of Improvement of Higher Education Personal (CAPES) to MN Fernandes. The authors thank the Aquaculture Center of the São Paulo State University (CAUNESP), Jaboticabal, SP, for providing the fish. A.L. Cruz and W. Klein, and M.N. Fernandes are, respectively, research members of National Institute of Science and Technology in Comparative Physiology (INCT-Fisiologia Comparada) and National Institute of Science and Technology in Aquatic Toxicology (INCT-Toxicologia Aquática). A.L. Cruz acknowledges CAPES for awarding scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Luis da Cruz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Cruz, A.L., da Silva, H.R., Lundstedt, L.M. et al. Air-breathing behavior and physiological responses to hypoxia and air exposure in the air-breathing loricariid fish, Pterygoplichthys anisitsi . Fish Physiol Biochem 39, 243–256 (2013). https://doi.org/10.1007/s10695-012-9695-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-012-9695-0

Keywords

Navigation