Skip to main content
Log in

Controlled Synthesis of Acrylonitrile-Based Polymers as Precursors for Carbon Fiber Production

  • Published:
Fibre Chemistry Aims and scope

The review considers modern methods for the synthesis of polyacrylonitrile as a precursor for the production of high-strength carbon fiber. Special emphasis was placed on using controlled radical polymerization techniques for the synthesis of a polyacrylonitrile precursor of a given molecular weight in organic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park Soo-Jin, Carbon Fibers, Springer, Dordrecht (2015) 178 p.

  2. P. Morgan, Carbon Fibers and Their Composites, Taylor and Francis, London (2005) 1166 p.

  3. Pat. EP 200970384; publ. 02.28.2014.

  4. S. Chand, J. Material Sci., 35, 1303-1313 (2000).

    Article  CAS  Google Scholar 

  5. Encyclopedia of Polymer Science and Technology, 3 ed., ed. J. I. Kroschwitz, Wiley, Hoboken (2003) 3005 p.

  6. F. Schaper, S. R. Foley, and R. F. Jordan, J. Am. Chem. Soc., 126, No. 7, 2114-2124 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. P. Yang, B. C. K. Chan, and M. C. Baird, Organometallics, 23, No. 11, 2752-2761 (2004).

    Article  CAS  Google Scholar 

  8. Y. Yao, Q. Shen, and L. Zhang, Chinese Sci. Bull., 46, No. 17, 1443-1445 (2001).

    Article  CAS  Google Scholar 

  9. Ya. I. Estrin, A. A. Grischuk, et al., Vysokomol. Soedin., 58B, No. 1, 22-30 (2016).

    Google Scholar 

  10. Ya. I. Estrin, A. E. Tarasov, et al., RSC Advance, 6, No. 108, p. 06064-106073 (2016).

    Article  CAS  Google Scholar 

  11. E. R. Badamshina, A. A. Grischuk, et al., Pat. RF 2565767 (2015).

  12. H. D. Johnson, Thesis Submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in Macromolecular Science and Engineering, Blacksburg, Virginia (2006) 108 p.

  13. D. F. Grishin and I. D. Grishin, Usp. Khim., 84, No. 7, 712-736 (2015).

    Article  CAS  Google Scholar 

  14. V. Ya. Varshavsky, Carbon Fibers [in Russian], Varshavsky, Moscow (2007) 500 p.

  15. X. Huang, Materials, 2, 2369-2403 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  16. D. Braun, H. Cherdron, et al., Polymer Synthesis: Theory and Practice Fundamentals, Methods, Experiments, 5th ed., Springer (2013) 404 p.

  17. C. Zhang, R. D. Gilbert, and R. E. Fornes, J. Appl. Polymer Sci., 58, No. 11, 2067-2075 (1995).

    Article  CAS  Google Scholar 

  18. Supercritical Carbon Dioxide in Polymer Reaction Engineering, eds. M. F. Kemmere and T. Meyer, Wiley-VCH Verlag GmbH & Co, Weinheim (2005) 339 p.

  19. A. V. Shlyakhtin, I. E. Nifant’ev, et al., Sverkhkriticheskie Flyuidy, 9, No. 1, 4-11 (2014).

    Google Scholar 

  20. I. D. Grishin and D. F. Grishin, Zh. Org. Khim., 52, No. 11, 1551-1566 (2016).

    Google Scholar 

  21. K. Matyjaszewski, Macromolecules, 45, No. 10, 4015-4039 (2012).

    Article  CAS  Google Scholar 

  22. G. Moad and E. S. H. Thang, Chem. Asian J., 8, No. 8, 1634-1644 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. J. Nicolas, Y. Guillaneuf, et al., Progr. Polymer Sci., 38, No. 1, 63-235 (2013).

    Article  CAS  Google Scholar 

  24. E. V. Kolyakina and D. F. Grishin, Usp. Khim., 78, No. 6, 579-614 (2009).

    Article  CAS  Google Scholar 

  25. M. V. Edeleva, D. A. Parkhomenko, et al., J. Polymer Sci. Part A: Polymer Chem., 52, No. 7, 929-943 (2014).

    Article  CAS  Google Scholar 

  26. K. Matyjaszewski and N. V. Tsarevsky, J. Am. Chem. Soc., 136, No. 18, 6513-6533 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. L. E. N. Allan, M. R. Perry, and M. P. Shaver, Prog. Polymer Sci., 37, No. 1, 127-156 (2012).

    Article  CAS  Google Scholar 

  28. A. Anastasaki, V. Nikolaou, et al., Chem. Rev., 116, No. 3, 835-877 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Y. K. Chong, T. P. T. Le, et al., Macromolecules, 32, No. 6, 2071-2074 (1999).

    Article  CAS  Google Scholar 

  30. E. V. Chernikova, V. B. Golubev, et al., Vysokomol. Soedin., 57C, No. 1, 106-122 (2015).

    Google Scholar 

  31. A. Debuigne, R. Poli, et al., Prog. Polymer Sci., 34, No. 3, 211-239 (2009).

    Article  CAS  Google Scholar 

  32. G. Lopez, A. Thenappan, B. Améduri, ACS Macro Lett., 4, No. 1, 16-20 (2015).

    Article  CAS  Google Scholar 

  33. Ma Jing, Chen Hou, and Zong Guangxi, E-Polymer, 11, No. 1, 63-66 (2011).

    Article  CAS  Google Scholar 

  34. Liu Xiao-hui, Wang Jin, et al., J. Polymer Sci. Part A: Polymer Chem., 50, No. 20, 4358-4364 (2012).

  35. Chen Hou, Liu Delong, et al., Polymers for Advanced Technol., 22, No. 11, 1513-1517 (2011).

    Article  CAS  Google Scholar 

  36. M. S. A. Rahaman, A. F. Ismail, and À. Mustafa, Polymer Degradation and Stability, 92, No. 8, 1421-1432 (2007).

    Article  CAS  Google Scholar 

  37. Analysis of the Consumption of Carbon Fibers and Materials Based on Them in Russia [in Russian], 2nd ed., updated, Tsentr investitsionno promyshlennogo analiza i prognoza (TsIPAP) [Center Industrial Investment Analysis and Forecast], Moscow (2014) 111 p.

  38. M. P. Taylor, Temperature and Stain Controlled Optimization of Stabilization of Polyacrylonitrile Precursor Fiber, thesis and dissertation, Knowledge, University of Kentucky (2012) 101 p.

  39. M. Alipour, B. Massoumi, and K. D. Safa, Iran Polym. J., 10, No. 2, 99-104 (2001).

    CAS  Google Scholar 

  40. Hou Chen, Ying Liang, et al., J. Macromol. Sci. Part A – Pure a. Appl. Chem., 47, No. 2, 172-176 (2010).

    Article  CAS  Google Scholar 

  41. C. Tang, T. Kowalewski, et al., Macromolecules, 36, No. 5, 1465-1473 (2003).

    Article  CAS  Google Scholar 

  42. M. R. Buchmeiser and M. G. Marino, Macromol. Material a. Eng., 297, No. 10, 894-901 (2012).

    Article  CAS  Google Scholar 

  43. D. F. Grishin, Usp. Khim., 62, No. 10, 1007-1019 (1993).

    Article  CAS  Google Scholar 

  44. I. D. Grishin and D. F. Grishin, Usp. Khim., 77, No. 7, 672-689 (2008).

    Article  CAS  Google Scholar 

  45. Zou Jun-Ting, Wang Yu-Song, et al., Macromolecules, 46, No. 5, 1765-1772 (2013).

    Article  CAS  Google Scholar 

  46. Yu Huali, Wu Yang, et al., J. Polymer Sci. Part A: Polymer Chem., 50, No. 23, 4983-4989 (2012).

    Article  CAS  Google Scholar 

  47. A. S. Brar and T. Saini, J. Polymer Sci. Part A: Polymer Chem., 44, No. 6, 1975-1984 (2006).

    Article  CAS  Google Scholar 

  48. Wang Guoxiang and Lu Mang, E-Polymers, Article Number: 054 (2012).

  49. I. D. Grishin, D. Yu. Kurochkin, and D. F. Grishin, Vysokomol. Soedin., 59B, No. 3, 861-196 (2017).

    Google Scholar 

  50. I. D. Grishin, S. A. Stakhi, D. F. Grishin, Zh. Prikl. Khim., 90, No. 7, 52-958 (2017).

    Google Scholar 

  51. I. D. Grishin, D. Yu. Kurochkina, and D. F. Grishin, Zh. Prikl. Khim., 88, No. 8, 1153-1160 (2015).

    Google Scholar 

  52. I. D. Grishin, D. Yu. Kurochkina, and D. F. Grishin, Pat RF 2627264 (2017)

  53. J. C. Theriot, B. G. McCarthy, et al., Macromol. Rapid Commun., 38, No. 13, 1700040 (2017).

    Article  CAS  Google Scholar 

  54. X. Pan, M. Lamson, et al., ACS Macro Lett., 4, No. 2, 192-196 (2015).

    Article  CAS  Google Scholar 

  55. T. Niu, J. Jiang, S. Li, et al., Macromol. Chem. Phys., 218, No. 15, 1700169 (2017).

    Article  CAS  Google Scholar 

  56. G. Moad, E. Rizzardo, and S. H. Thang, Polymer, 49, No. 5, 1079-1133 (2008).

    Article  CAS  Google Scholar 

  57. Liu Xiao-Hui, Li Yan-Guo, et al., J. Polymer Sci. Part A: Polymer Chem., 45, No. 7, 1272-1281 (2007).

    Article  CAS  Google Scholar 

  58. E. I. Chernikova, Z. A. Poteryaeva, and A. V. Plutalova, Vysokomol. Soedin., 56, No. 2, 119-127 (2014).

    Google Scholar 

  59. E. V. Chernikova, P. A. Terpugova, et al., Polymer, 44, No. 21, 4101-4107 (2003).

    Article  CAS  Google Scholar 

  60. E. V. Chernikova, Z. A. Poteryaeva, et al., Vysokomol. Soedin., 53B, No. 7, 1119-1132 (2011).

    Google Scholar 

  61. Niu Shaogan, Zhang Lifen, et al., J. Polymer Sci. Part A: Polymer Chem., 51, No. 5, 1197-1204 (2013).

    Article  CAS  Google Scholar 

  62. J. Y. Cai, J. McDonnell, et al., Mat. Today Commun., No. 9, 22-29 (2016).

  63. A. Kaiser, S. Brandau, et al., Macromol. Rap. Commun., 31, No. 18, 1616-1621 (2010).

    Article  CAS  Google Scholar 

  64. C. J. Dürr, S. G. Emmerling, et al., J. Polymer Sci. Part A: Polymer Chem., 50, No. 1, 174-180 (2012).

    Article  CAS  Google Scholar 

  65. Shaogan Niu, Mingqiang Ding, et al., J. Polymer Sci. Part A: Polymer Chem., 51, No. 24, 5263-5269 (2013).

    Article  CAS  Google Scholar 

  66. M. Y. Zaremski, A. V. Plutalova, et al., Macromol., 33, No. 12, 4365-4372 (2000).

    Article  CAS  Google Scholar 

  67. M. Yu. Zaremsky, E. S. Garina, et al., Vysokomol. Soedin., 50, No. 4, 579-588 (2008).

    Google Scholar 

  68. E. V. Kolyakina, V. V. Polyanskova, and D. F. Grishin, Vysokomol. Soedin., 49A, No. 8, 1471-1479 (2007).

    Google Scholar 

  69. M. Maric and V. Consolante, J. Appl. Polymer Sci., 127, No. 5, 3645-3651 (2013).

    Article  CAS  Google Scholar 

  70. L. Polakova, J. Lokaj, and P. Holler, E-Polymers, Article Number 065 (2010).

  71. V. Consolante, M. Maric, and A. Penlidis, J. Appl. Polymer Sci., 125, No. 5, 3963-3976 (2012).

    Article  CAS  Google Scholar 

  72. C. B. Tang, T. Kowalewski, and K. Matyjaszewski, Macromolecules, 36, No. 5, 1465-1473 (2003).

    Article  CAS  Google Scholar 

  73. O. B. Ilhanli, T. Erdogan, et al., J. Polymer Sci. Part A: Polymer Chem., 44, No. 10, 3374-3381 (2006).

    Article  CAS  Google Scholar 

  74. X-H. Liu, G-B. Zhang, et al., J. Polymer Sci. Part A: Polymer Chem., 48, No. 23, 5439-5445 (2010).

    Article  CAS  Google Scholar 

  75. C. Detrembleur, V. Sciannamea, et al., Macromolecules, 35, No. 19, 7214-7223 (2002).

    Article  CAS  Google Scholar 

  76. D. F. Grishin, L. L. Semenycheva, et al., Vysokomol. Soedin., 45A, No. 4, 533-539 (2003).

    Google Scholar 

  77. V. Sciannamea, R. Jerome, and C. Detrembleur, Chem. Rev., 108, No. 3, 1104-1126 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. E. V. Kolyakina, V. V. Polyanskova, et al., Zh. Prikl. Khim., 77, No. 1, 140-144 (2004).

    Google Scholar 

  79. M. V. Pavlovskaya, E. V. Kolyakina, et al., Zh. Prikl. Khim., 75, No. 11, 1905-1909 (2002).

    Google Scholar 

Download references

The work was performed as part the state task of the Ministry of Education and Science of Russia 4.5630.2017/VU and the Russian Foundation for Basic Research. Project 18-03-520016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. Grishin.

Additional information

Translated from Khimicheskie Volokna, No. 6, pp. 38 – 47, November – December 2018.

Appendices

Appendix 1.

figure b
figure c

where ÌtnLx is a metal complex catalyst; M is the monomer; kt is the chain termination reaction rate constant.

Appendix 2.

figure d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishin, D.F., Grishin, I.D. Controlled Synthesis of Acrylonitrile-Based Polymers as Precursors for Carbon Fiber Production. Fibre Chem 50, 514–523 (2019). https://doi.org/10.1007/s10692-019-10021-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-019-10021-8

Navigation