Skip to main content
Log in

Koszul Algebras and Their Ideals

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

We study associative graded algebras that have a “complete flag” of cyclic modules with linear free resolutions, i.e., algebras over which there exist cyclic Koszul modules with any possible number of relations (from zero to the number of generators of the algebra). Commutative algebras with this property were studied in several papers by Conca and others. Here we present a noncommutative version of their construction.

We introduce and study the notion of Koszul filtration in a noncommutative algebra and examine its connections with Koszul algebras and algebras with quadratic Grobner bases. We consider several examples, including monomial algebras, initially Koszul algebras, generic algebras, and algebras with one quadratic relation. It is shown that every algebra with a Koszul filtration has a rational Hilbert series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Conca, M. E. Rossi, and G. Valla, “Grobner flags and Gorenstein algebras,” Compositio Math., 129, 95–121 (2001).

    Google Scholar 

  2. A. Conca, N. V. Trung, and G. Valla, “Koszul property for points in projective spaces,” Math. Scand., 89, No.2, 201–216 (2001).

    Google Scholar 

  3. S. Blum, “Initially Koszul algebras,” Beitrage Algebra Geom., 41, No.2, 455–467 (2000).

    Google Scholar 

  4. A. Conca, “Universally Koszul algebras,” Math. Ann., 317, No.2, 329–346 (2000).

    Google Scholar 

  5. A. Conca, “Universally Koszul algebras defined by monomials,” Rend. Sem. Mat. Univ. Padova, 107, 1–5 (2002).

    Google Scholar 

  6. J. Herzog, T. Hibi, and G. Restuccia, “Strongly Koszul algebras,” Math. Scand., 86, No.2, 161–178 (2000).

    Google Scholar 

  7. S. B. Priddy, “Koszul resolutions,” Trans. Amer. Math. Soc., 152, No.1, 39–60 (1970).

    Google Scholar 

  8. L. E. Positselski, “Relation between the Hilbert series of dual quadratic algebras does not imply Koszulity,” Funkts. Anal. Prilozhen., 29, No.3, 83–87 (1995).

    Google Scholar 

  9. J.-E. Roos, “On the characterization of Koszul algebras. Four counter-examples,” C. R. Acad. Sci. Paris, Ser. I, 321, No.1, 15–20 (1995).

    Google Scholar 

  10. D. I. Piontkovskii, “On the Hilbert series of Koszul algebras,” Funkts Anal. Prilozhen., 35, No.2, 64–69 (2001).

    Google Scholar 

  11. A. Polishchuk and L. Positselskii, Quadratic Algebras, Preprint, 2000.

  12. V. E. Govorov, “The dimension of graded algebras,” Mat. Zametki, 12, No.2, 209–216 (1973).

    Google Scholar 

  13. J. Backelin, A Distributiveness Property of Augmented Algebras, and Some Related Homological Results, Ph. D. thesis, Stockholm, 1982.

  14. V. A. Ufnarovskii, “Algebras defined by two quadratic relations. Studies in the theory of rings, algebras, and modules,” Mat. Issled., No. 76, 148–171 (1984).

    Google Scholar 

  15. V. A. Ufnarovskii, “Combinatorial and asymptotic methods in algebra,” In: Itogi Nauki i Tekhniki, Current Problems in Math., Fundamental Directions [in Russian], Vol. 57, VINITI, Moscow, 1990, pp. 5–177; English transl.: Algebra VI, Encyclopedia Math. Sci., Vol. 57, Springer-Verlag, Berlin, 1995, pp. 1–196.

    Google Scholar 

  16. A. A. Davydov, “Totally positive sequences and R-matrix quadratic algebras,” J. Math. Sci. (New York), 100, No.1, 1871–1876 (2000).

    Google Scholar 

  17. M. Wambst, “Complexes de Koszul quantiques,” Ann. Inst. Fourier, Grenoble, 43, No.4, 1089–1156 (1993).

    Google Scholar 

  18. A. Beilinson, V. Ginzburg, and W. Soergel, “Koszul duality patterns in representation theory,” J. Amer. Math. Soc., 9, No.2, 473–527 (1996).

    Google Scholar 

  19. D. Anick, “On the homology of associative algebras,” Trans. Amer. Math. Soc., 296, No.2, 641–659 (1986).

    Google Scholar 

  20. D. Anick, “Generic algebras and CWcomplexes,” In: Proc. of 1983 Conf. on Algebraic Topology and K-Theory in Honor of John Moore, Ann. Math. Study, Vol. 113, Princeton Univ. Press, 1987, pp. 247–331.

    Google Scholar 

  21. J. J. Zhang, “Non-Noetherian regular rings of dimension 2,” Proc. Amer. Mat. Soc., 126, No.6, 1645–1653 (1998).

    Google Scholar 

  22. D. I. Piontkovskii, “Hilbert series and relations in algebras,” Izv. Ross. Akad. Nauk, Ser. Mat., 64, No.6, 205–219 (2000); English transl.: Russian Acad. Sci. Izv. Math., 64, No. 6, 1297–1311 (2000).

    Google Scholar 

  23. D. I. Piontkovskii, “Noncommutative Grobner bases and coherence of the monomial associative algebra,” Fundam. Prikl. Mat., 2, No.2, 501–509 (1996).

    Google Scholar 

  24. N. K. Iyudu, “Algorithmic solvability of the problem of recognition of zero divisors in a class of algebras,” Fundam. Prikl. Mat., 1, No.2, 541–544 (1995).

    Google Scholar 

  25. D. I. Piontkovskii, “Noncommutative Grobner bases, coherence of associative algebras, and divisibility in semigroups,” Fundam. Prikl. Mat., 7, No.2, 495–513 (2001).

    Google Scholar 

  26. V. E. Govorov, “Dimension and multiplicities of graded algebras,” Sib. Mat. J., 14, 1200–1206 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 39, No. 2, pp. 47–60, 2005

Original Russian Text Copyright © by D. I. Piontkovskii

Supported in part by the Russian Foundation for Basis Research under project 02-01-00468.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piontkovskii, D.I. Koszul Algebras and Their Ideals. Funct Anal Its Appl 39, 120–130 (2005). https://doi.org/10.1007/s10688-005-0024-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-005-0024-6

Key words

Navigation