Skip to main content
Log in

Mapping a major QTL for hairy leaf sheath introgressed from Aegilops tauschii and its association with enhanced grain yield in bread wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Aegilops tauschii, the diploid D genome progenitor of the hexaploid wheat, has been used to improve modern common wheat by creating synthetic hexaploid wheat (SHW) as a bridging mechanism for wheat breeding. Most Ae. tauschii accessions have hairiness on the leaf sheath, whereas the hexaploid common wheat is usually glabrous. In this study a major QTL for leaf sheath hairiness (LSH) was detected on the long arm of chromosome 4D in two recombinant inbred line (RIL) populations produced from SHW-derived cultivar Chuanmai 42. The QTL peak was flanked by markers Xbarc48 and Xbarc1183/D_GB5Y7FA01AGCKH_224, and explained more than 75 % of the phenotypic variation. The QTL allele for LSH was contributed by Chuanmai 42, and originated from Ae. tauschii. In both RIL populations the QTL allele producing hairy leaf sheath was significantly and positively associated with increased grain yield, grain weight and grain weight per spike. Moreover, most Chuanmai 42-derived cultivars have inherited the hairy leaf sheath character. These findings suggest that the hairy leaf sheath gene in Chuanmai 42 can be applied in marker-assisted selection (MAS) as a morphologically selectable marker in breeding for high yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Blanco A, Bellomo MP, Cenci A, De Giovanni C, D’Ovidio R, Iacono E, Laddomada B, Pagnotta MA, Porceddu E, Sciancalepore A, Simeone R, Tanzarella OA (1998) A genetic linkage map of durum wheat. Theor Appl Genet 97:721–728

    Article  CAS  Google Scholar 

  • Clausen JD, Keck D, Hiesey WM (1940) Experimental studies on the nature of species. I. The effect of varied environments of Western North American plants. Carnegie Inst Wash Publ 52:452

    Google Scholar 

  • Dobrovolskaya O, Pshenichnikova TA, Arbuzova VS, Lohwasser U, Röder MS, Börner A (2007) Molecular mapping of genes determining hairy leaf character in common wheat with respect to other species of the Triticeae. Euphytica 155:285–293

    Article  CAS  Google Scholar 

  • Ehleringer J (1981) Ecology and ecophysiology of leaf pubescence in North American Desert plants. In: Maybry T, Rodriquez E, Healey P (eds) Plant trichomes. Plenum Press, New York

    Google Scholar 

  • Ehleringer J (1982) The influence of water stress and temperature on leaf pubescence development in Encelia farinose. Am J Bot 69:670–675

    Article  Google Scholar 

  • Ehleringer J, Mooney HA (1978) Leaf hairs: effects on physiological activity and adaptive value to a desert shrub. Oecologia (Berl) 37:376–377

    Article  Google Scholar 

  • Franckowiak JD (1997) Revised linkage maps for morphological markers in barley, Hordeum vulgare. Barley Genet Newsl 26:9–21

    Google Scholar 

  • Gaines EF, Carstens A (1926) The linkage of pubescent node and beard factors as evidenced by a cross between two varieties of wheat. J Agric Res 33:753–755

    Google Scholar 

  • Ghorashy SR, Pendleton JW, Bernard RL, Bauer ME (1971) Effect of leaf pubescence on transpiration, photosynthetic rate and seed yield of three near-isogenic lines of soybeans. Crop Sci 11:426–427

    Article  Google Scholar 

  • Huang XQ, Cöster H, Ganal MW, Röder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    CAS  PubMed  Google Scholar 

  • Huang XQ, Kempf H, Ganal MW, Röder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933–943

    Article  CAS  PubMed  Google Scholar 

  • Jia HY, Wan HS, Yang SH, Zhang ZZ, Kong ZX, Xue SL, Zhang LX, Ma ZQ (2013) Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theor Appl Genet 126:2123–2139

    Article  CAS  PubMed  Google Scholar 

  • Konrad W, Burkhardt J, Ebner M, Roth-Nebelsick A (2014) Leaf pubescence as a possibility to increase water use efficiency by promoting condensation. Ecohydrology. doi:10.1002/eco.1518

    Google Scholar 

  • Korzun V, Malyshev S, Kartel N, Westermann T, Weber WE, Börner A (1998) A genetic linkage map of rye (Secale cereale L.). Theor Appl Genet 96:203–208

    Article  CAS  Google Scholar 

  • Korzun V, Malyshev S, Pickering RA, Börner A (1999) RFLP mapping of a gene for hairy leaf sheath using a recombinant line from Hordeum vulgare L. × Hordeum bulbosum L. cross. Genome 42:960–963

    Article  CAS  Google Scholar 

  • Kuchel H, Williams KJ, Langridge P, Eagles HA, Jefferies SP (2007) Genetic dissection of grain yield in bread wheat. I. QTL analysis. Theor Appl Genet 115:1029–1041

    Article  CAS  PubMed  Google Scholar 

  • Kunert A, Naz A, Dedeck O, Pillen K, Léon J (2007) AB-QTL analysis in winter wheat: I. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides × T. tauschii) as a source of favourable alleles for milling and baking quality traits. Theor Appl Genet 115:683–695

    Article  CAS  PubMed  Google Scholar 

  • Levy AA, Feldman M (1989) Genetics of morphological traits in wild wheat, Triticum turgidum var. dicoccoides. Euphytica 40:275–281

    Google Scholar 

  • Li J, Wei HT, Hu XR, Li CS, Tang YL, Liu DC, Yang WY (2011) Identification of a high-yield introgression locus in Chuanmai 42 inherited from synthetic hexaploid wheat. Acta Agron Sin 37:255–262

    CAS  Google Scholar 

  • Li J, Wan HS, Yang WY (2014) Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. J Syst Evol 52:735–742

    Article  Google Scholar 

  • Liu SB, Zhou RH, Dong YC, Li P, Jia JZ (2006) Development, utilization of introgression lines using a synthetic wheat as donor. Theor Appl Genet 112:1360–1373

    Article  CAS  PubMed  Google Scholar 

  • Lundqvist UJ, Franckowiak D, Konishi T (1997) New and revised descriptions of barley genes. Barley Genet Newsl 26:22–516

    Google Scholar 

  • Maystrenko OI (1976) Identification and location of genes controlling leaf hairing in young plants of common wheat. Genetika 12:5–15

    Google Scholar 

  • Narasimhamoorthy B, Gill BS, Fritz AK, Nelson JC, Brown-Guedira GL (2006) Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet 112:787–796

    Article  CAS  PubMed  Google Scholar 

  • Reynolds M, Skovmand B, Trethowan R, Pfeiffer W (1999) Evaluating a conceptual model for drought tolerance. In: Ribaut JM (ed) Using molecular markers to improve drought tolerance. CIMMYT, Mexico, pp 49–53

    Google Scholar 

  • Richards RA (1996) Defining selection criteria to improve yield under drought. Plant Growth Regul 20:57–166

    Article  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of micro-satellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  CAS  PubMed  Google Scholar 

  • Sourdille P, Cadalen T, Gaym G, Gill BS, Bernard M (2002) Molecular and physical mapping of genes affecting awning in wheat. Plant Breed 121:320–324

    Article  CAS  Google Scholar 

  • Taketa S, Chang CL, Ishii M, Takeda K (2002) Chromosome arm location of the gene controlling leaf pubescence of a Chinese local wheat cultivar ‘Hong-mang-mai’. Euphytica 125:141–147

    Article  CAS  Google Scholar 

  • Tang YL, Li J, Wu YQ, Wei HT, Li CS, Yang WY, Chen F (2011) Identification of QTLs for yield-related traits in the recombinant inbred line population derived from the cross between a synthetic hexaploid wheat derived variety Chuanmai 42 and a Chinese elite variety Chuannong 16. Agric Sci Chin 10:1665–1680

    Article  CAS  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williams K, Sorrells ME (2014) Three-dimensional seed size and shape QTL in hexaploid wheat (Triticum aestivum L.) populations. Crop Sci 54:98–110

    Article  Google Scholar 

  • Xue SL, Zhang ZZ, Lin F, Kong ZX, Cao Y, Li CJ, Yi HY, Mei MF, Zhu HL, Wu JZ, Xu HX, Zhao DM, Tian DG, Zhang CQ, Ma ZQ (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189

    Article  CAS  PubMed  Google Scholar 

  • Yang WY, Wu BH, Hu XR, Ye Y, Zhang Y (1999) Inheritance in hexaploid wheat of genes for hairy auricles and hairy leaf sheath derived from Aegilops tauschii Coss. Genetic Res Crop Evol 46:319–323

    Article  CAS  Google Scholar 

  • Yang WY, Liu DC, Li J, Zhang LQ, Wei HT, Hu XR, Zheng YL, He ZH, Zou YC (2009) Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genom 36:539–546

    Article  CAS  Google Scholar 

  • Yu M, Chen GY, Zhang LQ, Liu YX, Liu DC, Wang JR, Pu ZE, Zhang L, Lan XJ, Wei YM, Liu CJ, Zheng YL (2013) QTL mapping for important agronomic traits in synthetic hexaploid wheat derived from Aegiliops tauschii ssp. tauschii. J Integr Agric 13:1835–1844

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially supported by National Basic Research Program of China (2011CB100100), the National Science & Technology Pillar Program during 12th Five-year Plan Period (2013BAD01B00), NSFC programs (31401382, 31401383) and the Science & Technology Support Program of Sichuan Province (2011NZ0098-16). We are very grateful to Prof. Zhengqiang Ma for providing DNA of Chinese Spring ditelosomics, and to Prof. Robert McIntosh for his critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuyun Yang.

Additional information

Hongshen Wan and Yumin Yang have contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, H., Yang, Y., Li, J. et al. Mapping a major QTL for hairy leaf sheath introgressed from Aegilops tauschii and its association with enhanced grain yield in bread wheat. Euphytica 205, 275–285 (2015). https://doi.org/10.1007/s10681-015-1457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1457-5

Keywords

Navigation