Skip to main content
Log in

What is the SMARTest way to breed plants and increase agrobiodiversity?

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The evaluation and use of the vast diversity contained in plant genetic resources (PGR) is a main challenge for today’s plant breeding. The use of molecular markers has hugely increased the knowledge about genetic diversity and great hopes are raised about the potential of marker assisted selection [MAS; sometimes also termed SMART breeding (Selection with Markers and Advanced Reproductive Technologies)] to help increasing the use of PGR and maintaining crop genetic diversity. Another approach growing attention has been paid to over the past two decades and which also aims to increase variation in crops is evolutionary and participatory breeding (EPB). In this paper we discuss both the potential of marker-assisted breeding strategies and the potential of EPB breeding to contribute to the maintenance, increase and development of agrobiodiversity. The potentials of molecular markers in the evaluation and use of PGR and their documented contribution to agrobiodiversity are reviewed and results from guided interviews with scientists and breeders are given. Despite tremendous research efforts involving molecular markers, it is still difficult to obtain a clear picture how molecular markers contribute to the use of PGR in plant breeding. Minor and major crops do not benefit to the same degree from recent developments in marker technology. It therefore depends at least in part on economic considerations whether SMART breeding or EPB strategies or both are implemented in the breeding process of a crop. A general decision in favor or against MAS or EPB when breeding for diversity would not yield optimum results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. e.g. http://ec.europa.eu/environment/nature/biodiversity/comm2006/2020.htm http://www.bmu.de/english/nature/downloads/publ/41253.php 

  2. http://www.upov.int/upovlex/en/conventions/1991/act1991.html

References

  • Allard RW, Jain SK (1962) Population studies in predominantly self-pollinated species. II. Analysis of quantitative genetic changes in a bulk-hybrid population of barley. Evolution 16:90–101

    Article  Google Scholar 

  • Almekinders CJM, Elings A (2001) Collaboration of farmers and breeders: participatory crop improvement in perspective. Euphytica 122:425–438

    Article  Google Scholar 

  • Altieri MA, Nicholls CI (2004) Biodiversity and pest management in agroecosystems, 2nd edn. Food Products Press, New York

    Google Scholar 

  • Barr AR, Jefferies SP, Warner P, Moody DB, Chalmers KJ, Langridge P (2000) Marker-assisted selection in theory and practice. In: Proceedings of the 8th International Barley Genetics Symposium, Vol I. Food and Agriculture Organization of the United Nations (FAO), Adelaide, pp 167–178

  • Barr AR (2009) Marker-assisted selection in theory and practice. In: Ceccarelli S, Guimarães EP, Weltzien E (eds) Plant breeding and farmer participation. FAO, Rome, pp 479–517

    Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Bretting PK, Duvick DN (1997) Dynamic conservation of plant genetic resources. Adv Agron 61:1–51

    Article  Google Scholar 

  • Brumlop S, Finckh MR (2011) Applications and potentials of marker assisted selection (MAS) in plant breeding. Bundesamt für Naturschutz, Bonn

    Google Scholar 

  • Cabrera-Bosquet L, Crossa J, von Zitzewitz J, Serret MD, Luis Araus J (2012) High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge. J Integr Plant Biol 54:312–320

    Article  PubMed  Google Scholar 

  • Ceccarelli S (1996) Adaptation to low/high input cultivation. Euphytica 92:203–214

    Article  Google Scholar 

  • Ceccarelli S (2006) Decentralized-participatory plant breeding: lessons from the south—perspectives for the North. In: Proceedings of the ECO-PB workshop on participatory plant breeding: relevance for organic agriculture, held in domaine de la Besse (Camon, Ariège), Paris, France (ITAB), pp 8–15, 11–13 June 2006

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B 363:557–572

    Article  CAS  Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Google Scholar 

  • Danquah EY, Barrett JA (2002) Evidence of natural selection for disease resistance in composite cross five (ccv) of barley. Genetica 115:195–203

    Article  PubMed  CAS  Google Scholar 

  • Davis GP, D’Occhio MJ, Hetzel DJS (1997) SMART breeding: selection with markers and advanced reproductive technologies. In: Proceedings of the Association for the advancement of animal breeding and genetics. Vol 12, pp 429–432

  • Dawson JC, Rivière P, Berthellot J-F et al (2011) Collaborative plant breeding for organic agricultural systems in developed countries. Sustainability 3:1206–1223

    Article  Google Scholar 

  • Dawson JC, Serpolay E, Giuliano S, Schermann N, Galic N, Chable V, Goldringer I (2012) Multi-trait evolution of farmer varieties of bread wheat after cultivation in contrasting organic farming systems in Europe. Genetica 140:1–17

    Article  PubMed  CAS  Google Scholar 

  • Desclaux D (2005) Participatory Plant Breeding Methods for Organic Cereals. In: Proceedings of the COST SUSVAR/ECO-PB Workshop on Organic Plant Breeding Strategies and the Use of Molecular Markers. Driebergen. Available from: http://orgprints.org/6493/

  • Donini P, Law JR, Koebner RMD, Reeves JC, Cooke RJ (2000) Temporal trends in the diversity of UK wheat. Theor Appl Genet 100:912–917

    Article  Google Scholar 

  • Döring TF, Knapp S, Kovacs G, Murphy K, Wolfe MS (2011) Evolutionary plant breeding in cereals—into a new era. Sustainability 3:1944–1971

    Article  Google Scholar 

  • Dwivedi SL, Stalker HT, Blair MW, Bertioli DJ, Nielen S, Ortiz R (2008) Enhancing crop gene pools with beneficial traits using wild relatives. Plant Breed Rev 30:179–230

    Article  CAS  Google Scholar 

  • Eagles HA, Bariana HS, Ogbonnaya FC, Rebetzke GJ, Hollamby GJ, Henry RJ, Henschke PH, Carter M (2001) Implementation of markers in Australian wheat breeding. Aust J Agric Res 52:1349–1356

    Article  CAS  Google Scholar 

  • Enjalbert J, Dawson JC, Paillard S, Rhoné B, Rousselle Y, Thomas M, Goldringer I (2011) Dynamic management of crop diversity: from an experimental approach to on-farm conservation. C R Biol 334:458–468

    Article  PubMed  Google Scholar 

  • Enjalbert J, Goldringer I, David J, Brabant P (1998) The relevance of outcrossing for the dynamic management of genetic resources in predominantly selfing Triticum aestivum L. (Bread Wheat). Genet Sel Evol 30:197–211

    Article  Google Scholar 

  • FAO (2010) The second report on the state of the world’s plant genetic resources for Food and Agriculture. Rome

  • FAO (2011) Second global plan of action for plant genetic resources for Food and Agriculture. Rome

  • Finckh M (2008) Integration of breeding and technology into diversification strategies for disease control in modern agriculture. Eur J Plant Pathol 121:399–409

    Article  Google Scholar 

  • Finckh MR, Brumlop S, Goldringer I, Steffan P, Wolfe MS. 2009. Maintenance of diversity in naturally evolving composite cross wheat populations in Europe. In: Zschocke A (ed) Collected papers of the 1st IFOAM conference on organic animal and plant breeding. Tholey-Theley, pp 145–152

  • Finckh MR, Grosse M, Weedon O, Brumlop S. 2010. Population developments from the F5 to the F9 of three wheat composite crosses under organic and conventional conditions. In: Goldringer I, Dawson JC, Rey F, Vettoretti A, Chable V, Lammerts van Bueren E, Finckh MR, Barot S (eds) Breeding for resilience: a strategy for organic and low-input farming systems? EUCARPIA 2nd conference of the organic and low-input agriculture section, Paris, pp 51–54, 1–3 Dec 2010

  • Finckh MR, Wolfe MS (2006) Diversification strategies. In: Kaye B, Cooke BM, Gareth Jones D (eds) The epidemiology of plant diseases. Springer, Heidelberg, pp 269–307

    Chapter  Google Scholar 

  • Fowler C, Mooney PR (1990) Shattering: food, politics, and the loss of genetic diversity. University of Arizona Press, Tucson

    Google Scholar 

  • FSO (2011) Farm seed opportunities: conservation, breeding and production. Available from: http://www.louisbolk.org/downloads/2529.pdf

  • Gepts P (2006) Plant genetic resources conservation and utilization: the accomplishments and future of a societal insurance policy. Crop Sci 46:2278–2292

    Article  Google Scholar 

  • Goldringer I, Prouin C, Rousset M, Galic N, Bonnin I (2006) Rapid differentiation of experimental populations of wheat for heading time in response to local climatic conditions. Ann Bot 98:805–817

    Article  PubMed  Google Scholar 

  • Gupta PK, Kumar J, Mir RR, Kumar A (2010) Marker-assisted selection as a component of conventional plant breeding. Plant Breed Rev 33:145–217

    Article  Google Scholar 

  • Gyawali S, Sunwar S, Subedi M, Tripathi M, Joshi KD, Witcombe JR (2007) Collaborative breeding with farmers can be effective. Field Crop Res 101:88–95

    Article  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Hammer K (2004) Resolving the challenge posed by agrobiodiversity and plant genetic resources: an attempt. Kassel University Press, Kassel

    Google Scholar 

  • Harlan JR (1975) Our vanishing genetic resources. Science 188:617–621

    Article  PubMed  CAS  Google Scholar 

  • Haussmann BIG, Parzies HK, Presterl T, Susic Z, Miedaner T (2004) Plant genetic resources in crop improvement. Plant Genet Res 2:3–21

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1992) Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can J Bot 70:2032–2040

    Article  Google Scholar 

  • Ho C, McCouch R, Smith E (2002) Improvement of hybrid yield by advanced backcross QTL analysis in elite maize. Theor Appl Genet 105:440–448

    Article  PubMed  CAS  Google Scholar 

  • Joshi KD, Witcombe JR (2003) The impact of participatory plant breeding (PPB) on landrace diversity: a case study for high-altitude rice in Nepal. Euphytica 134:117–125

    Article  Google Scholar 

  • Lammerts van Bueren ET, Backes G, Vriend H, Østergård H (2010) The role of molecular markers and marker assisted selection in breeding for organic agriculture. Euphytica 175:51–64

    Article  Google Scholar 

  • Lammerts van Bueren ET, van Soest L, de Groot E, Boukema I, Osman A (2005) Broadening the genetic base of onion to develop better-adapted varieties for organic farming systems. Euphytica 146:125–132

    Article  Google Scholar 

  • Lecomte L, Duffé P, Buret M, Servin B, Hospital F, Causse M (2004) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109:658–668

    Article  PubMed  CAS  Google Scholar 

  • Lopez Noriega I (2009) Seed law in Europe: a changing scenario. Bioversity Newslett Eur 38:18

    Google Scholar 

  • Louwaars NP (2007) Seeds of confusion: The impact of policies on seed systems. Available from: http://library.wur.nl/WebQuery/wurpubs/358319

  • Martínez A, Amri A (2008) Managing plant genetic resources in the agro-ecosystem: global change, crop-associated biodiversity and ecosystem services. FAO [Internet]. Available from: http://www.fao.org/docrep/013/i1500e/i1500e15.pdf

  • Mooney P, Fowler C (1991) Die Saat des Hungers. Rowohlt Tb, Reinbek

  • Murphy K, Lammer D, Lyon S, Carter B, Jones SS (2005) Breeding for organic and low-input farming systems: an evolutionary-participatory breeding method for inbred cereal grains. Renew Agr Food Syst 20:48–55

    Article  Google Scholar 

  • Paillard S, Goldringer I, Enjalbert J, Doussinault G, de Vallavieille-Pope C, Brabant P (2000) Evolution of resistance against powdery mildew in winter wheat populations conducted under dynamic management. I Is specific seedling resistance selected? Theor Appl Genet 101:449–456

    Article  CAS  Google Scholar 

  • Phillips SL, Wolfe MS (2005) Evolutionary plant breeding for low input systems. J Agr Sci 143:245–254

    Article  Google Scholar 

  • Prescott-Allen C, Prescott-Allen R (1988) Genes from the wild: using wild genetic resources for food and raw material. Earthscan Publications Ltd., London

    Google Scholar 

  • Ragot M, Lee M (2007) Marker-assisted selection in maize: current status, potential, limitations and perspectives from the private and public sectors. In: Marker-assisted selection: current status and future perspectives in crops, livestock, forestry and fish. Food and Agriculture Organization of the United Nations (FAO), Rome, pp 117–150

  • Reif JC, Zhang P, Dreisigacker S, Warburton ML, van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2005) Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet 110:859–864

    Article  PubMed  CAS  Google Scholar 

  • Ribaut J-M, Ragot M (2006) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58:351–360

    Article  PubMed  Google Scholar 

  • Roussel V, Koenig J, Beckert M, Balfourier F (2004) Molecular diversity in french bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet 108:920–930

    Article  PubMed  CAS  Google Scholar 

  • Sanchez AC, Brar DS, Huang N, Li Z, Khush GS (2000) Sequence tagged site marker-assisted selection for three bacterial blight resistance genes in rice. Crop Sci 40:792–797

    Article  CAS  Google Scholar 

  • Schmidt RA (1978) Diseases in forest ecosystems: the importance of functional diversity. In: Horsfall JG, Cowling EB (eds) Plant disease: an advanced tratise, vol 2. Academic Press, New York, p 287

    Google Scholar 

  • Serpolay E, Dawson JC, Chable V, Bueren EL, Osman A, Pino S, Silveri D, Goldringer I (2011) Diversity of different farmer and modern wheat varieties cultivated in contrasting organic farming conditions in western Europe and implications for European seed and variety legislation. Org Agric 1:127–145

    Article  Google Scholar 

  • Singh AK, Hamel C, DePauw RM, Knox RE (2012) Genetic variability in arbuscular mycorrhizal fungi compatibility supports the selection of durum wheat genotypes for enhancing soil ecological services and cropping systems in Canada. Can J Microbiol 58:293–302

    Article  PubMed  CAS  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P, Wanyera R, Herrera-Foessel SA, Ward RW (2008) Will stem rust destroy the world’s wheat crop? Adv Agron 98:271–309

    Article  CAS  Google Scholar 

  • Smale M (1997) The green revolution and wheat genetic diversity: some unfounded assumptions. World Dev 25:1257–1269

    Article  Google Scholar 

  • Sperling L, Ashby JA, Smith ME, Weltzien E, McGuire S (2001) A framework for analyzing participatory plant breeding approaches and results. Euphytica 122:439–450

    Article  Google Scholar 

  • Stevens NE (1942) How plant breeding programs complicate plant disease problems. Science 95:313–316

    Article  PubMed  CAS  Google Scholar 

  • Stokstad E (2007) Deadly wheat fungus threatens world’s breadbaskets. Science 315:1786–1787

    Article  PubMed  CAS  Google Scholar 

  • Suneson CA (1956) An evolutionary plant breeding method. Agron J 48:188–191

    Article  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Tuvesson S, Post LV, Öhlund R, Hagberg P, Graner A, Svitashev S, Schehr M , Elovsson R (1998) Molecular breeding for the BaMMV/BaYMV resistance gene ym4 in winter barley. Plant Breed 117:19–22

    Google Scholar 

  • Webster RK, Saghai-Maroof MA, Allard RW (1986) Evolutionary response of barley composite cross II to Rhynchosporium secalis analyzed by pathogenic complexity and by gene-by-race relationships. Phytopathology 76:661–668

    Article  Google Scholar 

  • Werner K, Friedt W, Ordon F (2005) Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Mol Breed 16:45–55

    Google Scholar 

  • Witcombe JR (1999) Does plant breeding lead to a loss of genetic diversity? In: Agrobiodiversity: characterization, utilization and management. In: Wood D, Lenné JM. CABI Publishing, Wallingford, pp. 245–272

  • Witcombe JR, Joshi A, Joshi KD, Sthapit BR (1996) Farmer participatory crop improvement. I. Varietal selection and breeding methods and their impact on biodiversity. Expl Agric 32:445–460

    Google Scholar 

  • Van de Wouw M, Kik C, van Hintum T, van Treuren R, Visser B (2009) Genetic erosion in crops: concept, research results and challenges. Plant Genet Res 8:1–15

    Article  Google Scholar 

  • Van de Wouw M, van Hintum T, Kik C, van Treuren R, Visser B (2010) Genetic diversity trends in twentieth century crop cultivars: a meta analysis. Theor Appl Genet 120:1241–1252

    Article  PubMed  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Xu YB, Ishii T, McCouch SR (2003) Marker-assisted evaluation of germplasm resources for plant breeding. In: Mew TW, Brar DS, Peng S, Dawe D, Hardy B (eds) Rice science: innovations and impact for livelihood. IRRI, Metro Manila

    Google Scholar 

  • Young ND (1999) A cautiously optimistic vision for marker-assisted breeding. Mol Breed 5:505–510

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the German Federal Agency for Nature Conservation (BfN) Research & Development Grant No 350 889 0020, Titel ‘Applications and Potentials of Marker Assisted Selection (MAS) in Plant Breeding’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Brumlop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brumlop, S., Reichenbecher, W., Tappeser, B. et al. What is the SMARTest way to breed plants and increase agrobiodiversity?. Euphytica 194, 53–66 (2013). https://doi.org/10.1007/s10681-013-0960-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-013-0960-9

Keywords

Navigation