Skip to main content
Log in

Identification of major QTLs associated with stable resistance of tomato cultivar ‘Hawaii 7996’ to Ralstonia solanacearum

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Bacterial wilt caused by Ralstonia solanacearum is one of the most devastating diseases of tomato. Tomato cultivar ‘Hawaii 7996’ has been shown to have stable resistance against different strains under different environments. This study aimed to locate quantitative trail loci (QTLs) associated with stable resistance using 188 recombinant inbred lines (RILs) derived from ‘Hawaii 7996’ and ‘West Virginia 700.’ A new linkage map with good genome coverage was developed, mainly using simple sequence repeat markers developed from anchored bacterial artificial chromosome or scaffold sequences of tomato. The population was evaluated against phylotype I and phylotype II strains at seedling stage or in the field in Indonesia, Philippines, Taiwan, Thailand, and Reunion. Two major QTLs were identified to be associated with stable resistance. Bwr-12, located in a 2.8-cM interval of chromosome 12, controlled 17.9–56.1 % of total resistance variation. The main function of Bwr-12 was related to suppression of internal multiplication of the pathogen in the stem. This QTL was not associated with resistance against race 3-phylotype II strain. Bwr-6 on chromosome 6 explained 11.5–22.2 % of the phenotypic variation. Its location differed with phenotype datasets and was distributed along a 15.5-cM region. The RILs with the resistance allele from both Bwr-12 and Bwr-6 had the lowest disease incidence, which was significantly lower than the groups with only Bwr-12 or Bwr-6. Our studies confirmed the polygenic nature of resistance to bacterial wilt in tomato, and that stable resistance in ‘Hawaii 7996’ is mainly associated with Bwr-6 and Bwr-12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ashrafi H, Kinkade M, Foolad MR (2009) A new genetic linkage map of tomato based on a Solanum lycopersicum × S. pimpinellifolium RIL population displaying locations of candidate pathogen response genes. Genome 52:935–956

    Article  PubMed  CAS  Google Scholar 

  • Balatero C (2000) Genetic analysis and molecular mapping of bacterial wilt resistance in tomato (Lycopersicon esculentum Mill.). Ph.D. Dissertation, University of the Philippines Los Baños, Philippines, p 147

  • Balatero CH, Hautea DM, Narciso JO, Hanson PM (2005) QTL mapping for bacterial wilt resistance in Hawaii 7996 using AFLP, RGA, and SSR markers. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, St. Paul, pp 301–308

    Google Scholar 

  • Burr B, Burr FA (1991) Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. Trends Genet 7:55–60

    PubMed  CAS  Google Scholar 

  • Carmeille A, Prior P, Kodja H, Chiroleu F, Luisetti J, Besse P (2006a) Evaluation of resistance to race 3, biovar 2 of Ralstonia solanacearum in tomato germplasm. J Phytopathol 154:398–402

    Article  Google Scholar 

  • Carmeille A, Caranta C, Dintinger J, Prior P, Luisetti J, Besse P (2006b) Identification of QTLs for Ralstonia solanacearum race 3-phylotype II resistance in tomato. Theor Appl Genet 113:110–121

    Article  PubMed  CAS  Google Scholar 

  • Cellier G, Prior P (2010) Deciphering phenotypic diversity of Ralstonia solanacearum strains pathogenic to potato. Phytopathology 100:1250–1261

    Article  PubMed  CAS  Google Scholar 

  • Danesh D, Aarons S, Mcgill GE, Young ND (1994) Genetic dissection of oligogenic resistance to bacterial wilt in tomato. Mol Plant Microbe Interact 7:464–471

    Article  PubMed  CAS  Google Scholar 

  • Deberdt P, Oliver J, Thoquet P, Quénéhervé P, Prior P (1999) Evaluation of bacterial wilt resistance in tomato lines nearly isogenic for the Mi gene for resistance to root-knot. Plant Pathol 48:415–424

    Article  Google Scholar 

  • Denny TP (2006) Plant pathogenic Ralstonia species. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 573–644

  • Deslandes L, Pileur F, Liaubet L et al (1998) Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum. Mol Plant Microbe Interact 11:659–667

    Article  PubMed  CAS  Google Scholar 

  • Deslandes L, Olivier J, Peeters N, Feng, DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA 100(13):8024–8029

    Google Scholar 

  • Dickinson M, Jones DA, Jones JDG (1993) Close linkage between the Cf-2/Cf-5 and Mi resistance loci in tomato. Mol Plant Microbe Interact 6:341–347

    Article  PubMed  CAS  Google Scholar 

  • Elphinstone JG (2005) The current bacterial wilt situation: a global overview. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, St. Paul, pp 9–28

    Google Scholar 

  • Fegan M, Prior P (2005) How complex is the “Ralstonia solanacearum species complex”? In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, St. Paul, pp 449–461

    Google Scholar 

  • Geethanjali S, Chen KY, Pastrana DV, Wang JF (2010) Development and characterization of tomato SSR markers from genomic sequences of anchored BAC clones on chromosome 6. Euphytica 173:85–91

    Article  CAS  Google Scholar 

  • Geethanjali S, Kadirvel P, de la Peña R, Rao ES, Wang JF (2011) Development of tomato SSR markers from anchored BAC clones of chromosome 12 and their application for genetic diversity analysis and linkage mapping. Euphytica 178:283–295

    Article  Google Scholar 

  • Grimault V, Prior P (1993) Bacterial wilt resistance in tomato associated with tolerance of vascular tissues to Pseudomonas solanacearum. Plant Pathol 42:589–594

    Article  Google Scholar 

  • Grimault V, Anais G, Prior P (1994) Distribution of Pseudomonas solanacearum in the stem tissues of tomato plants with different levels of resistance to bacterial wilt. Plant Pathol 43:663–668

    Article  Google Scholar 

  • Hai TTH, Esch E, Wang JF (2008) Resistance to Taiwanese race 1 strains of Ralstonia solanacearum in wild tomato germplasm. Eur J Plant Pathol 122:471–479

    Article  Google Scholar 

  • Hanson PM, Wang JF, Licardo O, Hanudin, Mah SY, Hartman GL, Lin YC, Chen JT (1996) Variable reaction of tomato lines to bacterial wilt evaluated at several locations in Southeast Asia. HortScience 31:143–146

    Google Scholar 

  • Hayward AC (1991) Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 29:65–87

    Article  PubMed  CAS  Google Scholar 

  • Jaunet T, Wang JF (1999) Variation in genotype and aggressiveness diversity of Ralstonia solanacearum race 1 isolated from tomato in Taiwan. Phytopathology 89:320–327

    Article  PubMed  CAS  Google Scholar 

  • Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24:2788–2789

    Article  PubMed  CAS  Google Scholar 

  • Kado CI, Heskett MG (1970) Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology 60:969–976

    Article  PubMed  CAS  Google Scholar 

  • Kelman A (1954) The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693–695

    Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lebeau A, Daunay MC, Frary A, Palloix A, Wang JF, Dintinger J, Chiroleu F, Wicker E, Prior P (2011) Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in the Ralstonia solanacearum species complex. Phytopathology 101:154–165

    Article  PubMed  CAS  Google Scholar 

  • Lin CH, Hsu ST, Tzeng KC, Wang JF (2009) Detection of race 1 strains of Ralstonia solanacearum in field samples in Taiwan using a BIO-PCR method. Eur J Plant Pathol 124:75–85

    Article  CAS  Google Scholar 

  • Lopes CA, Quezado Soares AM, De Melo PE (1994) Differential resistance of tomato cultigens to biovars I and III of Pseudomonas solanacearum. Plant Dis 78:1091–1094

    Article  Google Scholar 

  • Mangin B, Thoquet P, Olivier J, Grimsley NH (1999) Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci. Genetics 151:1165–1172

    PubMed  CAS  Google Scholar 

  • Prior P, Steva H, Cadet P (1990) Aggressiveness of strains of Pseudomonas solanacearum from the French West Indies (Martinique and Guadeloupe) on tomato. Plant Dis 74:962–965

    Article  Google Scholar 

  • Scott JW, Wang JF, Hanson PM (2005) Breeding tomatoes for resistance to bacterial wilt, a Global view. Acta Hortic 695:161–172

    Google Scholar 

  • Seifi A, Kaloshian I, Vossen J et al (2011) Linked, if not the same, Mi-1 homologues confer resistance to tomato powdery mildew and root-knot nematodes. Mol Plant Microbe Interact 24:441–450

    Article  PubMed  CAS  Google Scholar 

  • Thoquet P, Olivier J, Sperisen C, Rogowsky P, Laterrot H, Grimsley NH (1996a) Quantitative trait loci determining resistance to bacterial wilt in tomato cultivar Hawaii 7996. Mol Plant Microbe Interact 9:826–836

    Article  CAS  Google Scholar 

  • Thoquet P, Olivier J, Sperison C et al (1996b) Polygenic resistance of tomato plants to bacterial wilt in the French West Indies. Mol Plant Microbe Interact 9:837–842

    Article  CAS  Google Scholar 

  • Tomato Genome Consortium (2012) The tomato genome sequence provide insights into fleshy evolution. Nature 485:635–641

    Article  Google Scholar 

  • Truong HTH, Graham E, Esch E, Wang JF, Hanson P (2010) Distribution of DArT markers in a genetic linkage map of tomato. Korean J Hortic Sci Technol 28:664–671

    CAS  Google Scholar 

  • Tsai JW, Hsu ST, Chen LC (1985) Bacteriocin-producing strains of Pseudomonas solanacearum and their effect on development of bacterial wilt of tomato. Plant Prot Bull 27:267–278

    Google Scholar 

  • Vailleau F, Sartorel E et al (2007) Characterization of the interaction between the bacterial wilt pathogen Ralstonia solanacearum and the model legume plant Medicago truncatula. Mol Plant Microbe Interact 20:159–167

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW (2006) JoinMap Version 4.0, software for the calculation of genetic linkage maps. Kyazma B.V., Wageningen

  • Vasse J, Frey P, Trigalet A (1995) Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Mol Plant Microbe Interact 8:241–251

    Article  CAS  Google Scholar 

  • Verlaan MG, Szinay D, Hutton SF, de Jong H, Kormelink R, Visser RG, Scott JW, Bai Y (2011) Chromosomal rearrangements between tomato and Solanum chilense hamper mapping and breeding of the TYLCV resistance gene Ty-1. Plant J 68:1093–1103

    Article  PubMed  CAS  Google Scholar 

  • Wang JF, Hanson PM, Barnes JA (1998). Worldwide evaluation of an international set of resistance sources to bacterial wilt in tomato. In: Prior P, Allen C, and Elphinstone J (eds). Bacterial wilt disease: molecular and ecological aspects. Springer, Berlin, pp 269–275

  • Wang JF, Olivier J, Thoquet P, Mangin B, Sauviac L, Grimsley NH (2000) Resistance of tomato line Hawaii 7996 to Ralstonia solanacearum Pss4 in Taiwan is controlled mainly by a major strain-specific locus. Mol Plant Microbe Interact 13:6–13

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Dolores R. Ledesma for conducting statistical analyses and Ms. Chiou-fen Hsu for technical assistance. This study is supported by funding provided by GTZ 81070160: Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH of Germany and COA 98as-1.2.1-s-ag: Council of Agriculture of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaw-Fen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, JF., Ho, FI., Truong, H.T.H. et al. Identification of major QTLs associated with stable resistance of tomato cultivar ‘Hawaii 7996’ to Ralstonia solanacearum . Euphytica 190, 241–252 (2013). https://doi.org/10.1007/s10681-012-0830-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0830-x

Keywords

Navigation