Skip to main content
Log in

Molecular mapping of quantitative trait loci (QTLs) controlling aluminium tolerance in bread wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Aluminium (Al) toxicity is a major constraint to crop productivity in acidic soils. A quantitative trait locus (QTL) analysis was performed to identify the genetic basis of Al tolerance in the wheat cultivar ‘Chinese Spring’. A nutrient solution culture approach was undertaken with the root tolerance index (RTI) and hematoxylin staining method as parameters to assess the Al tolerance. Using a set of D genome introgression lines, a major Al tolerance QTL was located on chromosome arm 4DL, explaining 31% of the phenotypic variance present in the population. A doubled haploid population was used to map a second major Al tolerance QTL to chromosome arm 3BL. This major QTL (Qalt CS .ipk-3B) in ‘Chinese Spring’ accounted for 49% of the phenotypic variation. Linkage of this latter QTL to SSR markers opens the possibility to apply marker-assisted selection (MAS) and pyramiding of this new QTL to improve the Al tolerance of wheat cultivars in breeding programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aniol A (1990) Genetics of tolerance to aluminum in wheat (Triticum aestivum L. Thell.). Plant Soil 123:223–227. doi:10.1007/BF00011272

    Article  CAS  Google Scholar 

  • Berzonsky WA (1992) The genomic inheritance of aluminum tolerance in Atlas-66 wheat. Genome 35:689–693

    Google Scholar 

  • Börner A, Freytag U, Sperling U (2006) Analysis of wheat disease resistance data originating from screenings of Gatersleben genebank accessions during 1933 and 1992. Genet Resour Crop Evol 53:453–465. doi:10.1007/s10722-004-1158-8

    Article  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L). 2. Aluminum-stimulated excretion of malic-acid from root apices. Plant Physiol 103:695–702

    PubMed  CAS  Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL, Koebner RMD, Liu CJ, Masojc P, Xie DX, Gale MD (1993) Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet 85:673–680. doi:10.1007/BF00225004

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Fontecha G, Silva-Navas J, Benito C, Mestres MA, Espino FJ, Hernandez-Riquer MV, Gallego FJ (2007) Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.). Theor Appl Genet 114:249–260. doi:10.1007/s00122-006-0427-7

    Article  PubMed  CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974. doi:10.1073/pnas.95.5.1971

    Article  PubMed  CAS  Google Scholar 

  • Guo PG, Bai GH, Carver B, Li RH, Bernardo A, Baum M (2007) Transcriptional analysis between two wheat near-isogenic lines contrasting in aluminum tolerance under aluminum stress. Mol Genet Genomics 277:1–12. doi:10.1007/s00438-006-0169-x

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185. doi:10.1023/A:1003910819967

    Article  CAS  Google Scholar 

  • Hede AR, Skovmand B, Ribaut JM, Gonzalez-de-Leon D, Stolen O (2002) Evaluation of aluminium tolerance in a spring rye collection by hydroponic screening. Plant Breed 121:241–248. doi:10.1046/j.1439-0523.2002.00706.x

    Article  CAS  Google Scholar 

  • Hoekenga OA, Maron LG, Pineros MA, Cancado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:9738–9743. doi:10.1073/pnas.0602868103

    Article  PubMed  CAS  Google Scholar 

  • Kerridge PC, Kronstad WE (1968) Evidence of genetic resistance to aluminum toxicity in wheat (Triticum aestivum Vill Host). Agron J 60:710–711

    Article  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Mol Biol 46:237–260. doi:10.1146/annurev.pp.46.060195.001321

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181. doi:10.1016/0888-7543(87)90010-3

    Article  PubMed  CAS  Google Scholar 

  • Landjeva S, Korzun V, Börner A (2007) Molecular markers: actual and potential contributions to wheat genome characterization and breeding. Euphytica 156:271–296. doi:10.1007/s10681-007-9371-0

    Article  CAS  Google Scholar 

  • Law CN, Worland AJ (1973) In: Plant Breeding Institute Annual Report, pp 25-65, 1972

  • Luo MC, Dvorak J (1996) Molecular mapping of an aluminum tolerance locus on chromosome 4D of Chinese Spring wheat. Euphytica 91:31–35. doi:10.1007/BF00035273

    Article  CAS  Google Scholar 

  • Ma HX, Bai GH, Carver BF, Zhou LL (2005) Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar Atlas 66. Theor Appl Genet 112:51–57. doi:10.1007/s00122-005-0101-5

    Article  PubMed  CAS  Google Scholar 

  • Ma HX, Bai GH, Lu WZ (2006) Quantitative trait loci for Aluminum resistance in wheat cultivar Chinese Spring. Plant Soil 283:239–249. doi:10.1007/s11104-006-0008-1

    Article  CAS  Google Scholar 

  • Magalhaes JV (2006) Aluminum tolerance genes are conserved between monocots and dicots. Proc Natl Acad Sci USA 103:9749–9750. doi:10.1073/pnas.0603957103

    Article  PubMed  CAS  Google Scholar 

  • Magalhaes JV, Garvin DF, Wang YH, Sorrells ME, Klein PE, Schaffert RE, Li L, Kochian LV (2004) Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the poaceae. Genetics 167:1905–1914. doi:10.1534/genetics.103.023580

    Article  PubMed  CAS  Google Scholar 

  • Magalhaes JV, Liu J, Guimaraes CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161. doi:10.1038/ng2074

    Article  PubMed  CAS  Google Scholar 

  • Matos M, Camacho MV, Perez-Flores V, Pernaute B, Pinto-Carnide O, Benito C (2005) A new aluminum tolerance gene located on rye chromosome arm 7RS. Theor Appl Genet 111:360–369. doi:10.1007/s00122-005-2029-1

    Article  PubMed  CAS  Google Scholar 

  • McFadden ES, Sears ER (1947) The genome approach in radical wheat breeding. J Am Soc Agron 39:1011–1026

    Google Scholar 

  • Milla MAR, Gustafson JP (2001) Genetic and physical characterization of chromosome 4DL in wheat. Genome 44:883–892. doi:10.1139/gen-44-5-883

    Article  PubMed  CAS  Google Scholar 

  • Nawrot M, Szarejko I, Maluszynski M (2001) Barley mutants with increased tolerance to aluminium toxicity. Euphytica 120:345–356. doi:10.1023/A:1017565121835

    Article  CAS  Google Scholar 

  • Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245. doi:10.1023/A:1009604312050

    Article  CAS  Google Scholar 

  • Nguyen VT, Burow MD, Nguyen HT, Le BT, Le TD, Paterson AH (2001) Molecular mapping of genes conferring aluminum tolerance in rice (Oryza sativa L.). Theor Appl Genet 102:1002–1010. doi:10.1007/s001220000472

    Article  CAS  Google Scholar 

  • Nguyen VT, Nguyen BD, Sarkarung S, Martinez C, Paterson AH, Nguyen HT (2002) Mapping of genes controlling aluminum tolerance in rice: comparison of different genetic backgrounds. Mol Genet Genomics 267:772–780. doi:10.1007/s00438-002-0686-1

    Article  PubMed  CAS  Google Scholar 

  • Ninamango-Cardenas FE, Guimaraes CT, Martins PR, Parentoni SN, Carneiro NP, Lopes MA, Moro JR, Paiva E (2003) Mapping QTLs for aluminum tolerance in maize. Euphytica 130:223–232. doi:10.1023/A:1022867416513

    Article  CAS  Google Scholar 

  • Papernik LA, Bethea AS, Singleton TE, Magalhaes JV, Garvin DF, Kochian LV (2001) Physiological basis of reduced Al tolerance in ditelosomic lines of Chinese Spring wheat. Planta 212:829–834. doi:10.1007/s004250000444

    Article  PubMed  CAS  Google Scholar 

  • Pestsova EG, Börner A, Röder MS (2001) Development of a set of Triticum aestivumAegilops tauschii introgression lines. Hereditas 135:139–143. doi:10.1111/j.1601-5223.2001.00139.x

    Article  PubMed  CAS  Google Scholar 

  • Pestsova EG, Börner A, Röder MS (2006) Development and QTL assessment of Triticum aestivum–Aegilops tauschii introgression lines. Theor Appl Genet 112:634–647. doi:10.1007/s00122-005-0166-1

    Article  PubMed  Google Scholar 

  • Polle E, Konzak CF, Kittrick JA (1978) Visual detection of aluminum tolerance levels in wheat by Hematoxylin staining of seedling roots. Crop Sci 18:823–827

    CAS  Google Scholar 

  • Raman H, Zhang K, Cakir M, Appels R, Garvin DF, Maron LG, Kochian LV, Moroni JS, Raman R, Imtiaz M, Drake-Brockman F, Waters I, Martin P, Sasaki T, Yamamoto Y, Matsumoto H, Hebb DM, Delhaize E, Ryan PR (2005) Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48:781–791

    PubMed  CAS  Google Scholar 

  • Rao IM, Zeigler RS, Vera R, Sarkarung S (1993) Selection and breeding for acid-soil tolerance in crops. Biomed Sci 43:454–465

    Google Scholar 

  • Riede CR, Anderson JA (1996) Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci 36:905–909

    Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995) Characterization of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta 196:103–110. doi:10.1007/BF00193223

    Article  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653. doi:10.1111/j.1365-313X.2003.01991.x

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Gustafson JP (1995) The expression of aluminum stress induced polypeptides in a population segregating for aluminum tolerance in wheat (Triticum aestivum L.). Genome 38:1213–1220

    PubMed  CAS  Google Scholar 

  • Tang Y, Sorrells ME, Kochian LV, Garvin DF (2000) Identification of RFLP markers linked to the barley aluminum tolerance gene Alp. Crop Sci 40:778–782

    CAS  Google Scholar 

  • Tang Y, Garvin DF, Kochian LV, Sorrells ME, Carver BF (2002) Physiological genetics of aluminum tolerance in the wheat cultivar Atlas 66. Crop Sci 42:1541–1546

    Google Scholar 

  • Von Uexkull HR, Mutert E (1995) Global extent, development and economic-impact of acid soils. Plant Soil 171:1–15. doi:10.1007/BF00009558

    Article  Google Scholar 

  • Weng Y, Li W, Devkota RN, Rudd JC (2005) Microsatellite markers associated with two Aegilops tauschii-derived greenbug resistance loci in wheat. Theor Appl Genet 110:462–469. doi:10.1007/s00122-004-1853-z

    Article  PubMed  CAS  Google Scholar 

  • Wight CP, Kibite S, Tinker NA, Molnar SJ (2006) Identification of molecular markers for aluminium tolerance in diploid oat through comparative mapping and QTL analysis. Theor Appl Genet 112:222–231. doi:10.1007/s00122-005-0114-0

    Article  PubMed  CAS  Google Scholar 

  • Wood S, Seastian K, Scherr S (2000) Soil resource condition. In pilot analysis of global ecosystems. International Food Policy Research Institute and the World Resources Institute, Washington, DC, pp 45–54

    Google Scholar 

  • Wu P, Liao CY, Hu B, Yi KK, Jin WZ, Ni JJ, He C (2000) QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages. Theor Appl Genet 100:1295–1303. doi:10.1007/s001220051438

    Article  CAS  Google Scholar 

  • Zhou LL, Bai GH, Ma HX, Carver BF (2007a) Quantitative trait loci for aluminum resistance in wheat. Mol Breed 19:153–161. doi:10.1007/s11032-006-9054-x

    Article  CAS  Google Scholar 

  • Zhou LL, Bai GH, Carver B, Zhang DD (2007b) Identification of new sources of aluminum resistance in wheat. Plant Soil 297:105–118. doi:10.1007/s11104-007-9324-3

    Article  CAS  Google Scholar 

Download references

Acknowledgment

S. Navakode is sincerely grateful to Mr. K. Zaynali Nezhad, Ms. K. Neumann and Dr. E.K. Khlestkina for their help, co-operation and fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Börner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navakode, S., Weidner, A., Lohwasser, U. et al. Molecular mapping of quantitative trait loci (QTLs) controlling aluminium tolerance in bread wheat. Euphytica 166, 283–290 (2009). https://doi.org/10.1007/s10681-008-9845-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-008-9845-8

Keywords

Navigation