Skip to main content

Advertisement

Log in

Major ion chemistry and atmospheric CO2 consumption deduced from the Batal glacier, Lahaul–Spiti valley, Western Himalaya, India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

This study mainly focuses on the source identification of various ions in meltwater and estimation of CO2 consumption rate by chemical weathering in the Batal glacier basin on the basis of 2 years of study (2015 and 2017). The glacier meltwater has been monitored as slightly acidic in nature having mean pH value of 6.6. Ca2+ was observed as the most dominant cation contributing about 76% of TZ+ (total cations), whereas SO42− was observed as the most dominant anion contributing about 70% of TZ (total anions) in the stream meltwater. High ratios of (Ca + Mg) versus TZ+ (mean value: 0.89 ± 0.02) and (Ca + Mg) versus (Na + K) (mean value: 8.51 ± 2.07) elucidate that stream water chemistry of the Batal glacier is largely controlled by carbonate weathering. Concentration of total dissolved solid in the glacial stream water was higher during the low-melt season (September) and lower during the high-melt period (July). The average value of daily mean TDS flux of the study area was calculated to be 12.4 t/day. The mean values of CWR (carbonate weathering rate) and SWR (silicate weathering rate) for the Batal glacier basin were calculated to be 97.4 and 22.8 t/km2/year, showing higher contribution of CWR as compared to SWR in the investigation area. CO2 consumption rate by the combined silicate and carbonate (chemical) weathering was estimated to be 11.1 × 105, 28.8 × 105 and 35.5 × 105 mol/km2/year during the study period September 2015, June 2017 and July 2017, respectively. The annual CO2 drawdown by the Batal glacier basin on the basis of CO2 consumption rate by chemical weathering is much lower as compared to the Gangotri glacier, which may be due to bigger size and higher meltwater runoff of the Gangotri glacier as compared to the Batal glacier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad, S., & Hasnain, S. I. (2000). Meltwater characteristics of Garhwal Himalayan glaciers. Journal of the Geological Society of India, 56, 431–439.

    CAS  Google Scholar 

  • Ahmad, S., & Hasnain, S. I. (2001). Chemical characteristics of stream draining from Dudu glacier: An Alpine meltwater stream in Ganga Headwater, Garhwal Himalaya. Journal of China University of Geosciences, 12(1), 75–83.

    Google Scholar 

  • Amiotte-Suchet, P., & Probst, J. L. (1993). Modelling of atmospheric CO2 consumption by chemical weathering of rocks: Application to the Garonne, Congo and Amazon Basins. Chemical Geology, 107, 205–210.

    Google Scholar 

  • Amiotte-Suchet, P., Probst, J. L., & Ludwig, W. (2003). Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2), 1038.

    Google Scholar 

  • APHA. (2005). Standard methods for examination of water and wastewater (21st ed.). Washington: American Public Health Association.

    Google Scholar 

  • Barandum, M., Huss, M., Usubaliev, R., Azisov, E., Berthier, E., Kääb, A., et al. (2018). Multi-decadal mass balance series of three Kyrgyz glaciers inferred from modelling constrained with repeated snow line observations. The Cryosphere, 12, 1899–1919.

    Google Scholar 

  • Benn, D. I., & Owen, L. A. (1998). The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: Review and speculative discussion. Journal of the Geological Society, London, 155, 353–363.

    Google Scholar 

  • Berner, R. A. (2003). The long-term carbon cycle, fossil fuels and atmospheric composition. Nature, 426, 323–326.

    CAS  Google Scholar 

  • Berner, R. A., Lassaga, A. C., & Garrels, R. M. (1983). The carbonate–silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science, 283, 641–683.

    CAS  Google Scholar 

  • Bhargava, O. N., & Srivastava, R. N. (1982). Unpublished GSI report of field season 1981–82.

  • Bisht, H., Arya, P. C., & Kumar, K. (2018). Hydro-chemical analysis and ionic flux of meltwater runoff from Khangri Glacier, West Kameng, Arunachal Himalaya, India. Environmental Earth Sciences, 77, 598. https://doi.org/10.1007/s12665-018-7779-6.

    Article  CAS  Google Scholar 

  • Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., et al. (2012). The state and fate of Himalayan glaciers. Science, 336(6079), 310–314.

    CAS  Google Scholar 

  • Bookhagen, B., & Burbank, D. W. (2010). Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research, 115(F3), F03019. https://doi.org/10.1029/2009JF001426.

    Article  Google Scholar 

  • Borgaonkar, H. P., Gandhi, N., Ram, S., & Krishnan, R. (2018). Tree-ring reconstruction of late summer temperatures in northern Sikkim (eastern Himalayas). Palaeogeography, Palaeoclimatology, Palaeoecology, 504, 125–135.

    Google Scholar 

  • Carling, G. T., Rupper, S. B., Fernandez, D. P., Tingey, D. G., & Harrison, C. B. (2017). Effect of atmospheric deposition and weathering on trace element concentrations in glacial meltwater at Grand Teton National Park, Wyoming, U.S.A. Arctic, Antarctic, and Alpine Research, 49(3), 427–440.

    Google Scholar 

  • Chahine, M. T. (1992). The hydrological cycle and its influence on climate. Nature, 359, 373–380.

    Google Scholar 

  • Collins, D. N. (1979). Hydrochemistry of meltwater draining from an Alpine glacier. Arctic and Alpine Research, 11, 307–324.

    CAS  Google Scholar 

  • Dalai, T. K., Krishnaswami, S., & Sarin, M. M. (2002). Major ion chemistry in the headwaters of the Yamuna river system: Chemical weathering, its temperature dependence and CO2 consumption in the Himalaya. Geochimica et Cosmochimica Acta, 66(19), 3397–3416.

    CAS  Google Scholar 

  • Das, P., Sharma, K. P., Jha, P. K., Ranjan, R., Herbert, R., & Kumar, M. (2016). Understanding the cyclicity of chemical weathering and associated CO2 consumption in the Brahmaputra River Basin (India): The role of major rivers in climate change mitigation perspective. Aquatic Geochemistry, 22, 225–251.

    CAS  Google Scholar 

  • De Smedt, B., & Pattyn, F. (2003). Numerical modelling of historical front variations and dynamic response of Sofiyskiy Glacier, Altai Mountains, Russia. Annals of Glaciology, 37, 143–149.

    Google Scholar 

  • Dessert, C., Dupré, B., Gaillardet, J., Francois, L. M., & Allegre, C. J. (2003). Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology, 20, 1–17.

    Google Scholar 

  • Dobhal, D. P., Gergan, J. T., & Thayyen, R. J. (2004). Recession and morphogeometrical changes of Dokriani glacier (1962–1995) Garhwal Himalaya, India. Current Science, 86, 692–696.

    Google Scholar 

  • Dyurgerov, M. B., & Meier, M. F. (2000). Twentieth century climate change: Evidence from small glaciers. Proceedings of National Academy of Sciences of the United States of America, 97, 1406–1411.

    CAS  Google Scholar 

  • Feng, F., Li, Z., Jin, S., Dong, Z., & Wang, F. (2012). Hydrochemical characteristics and solute dynamics of meltwater runoff of Urumqi Glacier No. 1, Eastern Tianshan, Northwest China. Journal of Mountain Science, 9, 472–482.

    Google Scholar 

  • Florence, T. M., & Farrar, Y. J. (1971). Spectrophotometric determination of chloride at the parts-per-billion level by the mercury(II) thiocyanate method. Analytica Chimica Acta, 54, 373–377.

    CAS  Google Scholar 

  • Gaillardet, J., Dupre, B., Louvat, P., & Allegre, C. J. (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159, 3–30.

    CAS  Google Scholar 

  • Gislason, S. R., Arnórsson, S., & Ármannsson, H. (1996). Chemical weathering of basalt in SW Iceland: Effects of runoff, age of rocks and vegetative/glacial cover. American Journal of Science, 296, 837–907.

    CAS  Google Scholar 

  • Han, H., Liu, S., Wang, J., Wang, Q., & Xie, C. (2010). Glacial runoff characteristics of the Koxkar Glacier, Tuomuer-Khan Tengri Mountain Ranges, China. Environmental Earth Sciences, 61, 665–674.

    CAS  Google Scholar 

  • Hartmann, J., Jansen, N., Dürr, H. H., Kempe, S., & Köhler, P. (2009). Global CO2 consumption by chemical weathering: What is the contribution of highly active weathering regions? Global and Planetary Change, 69(4), 185–194.

    Google Scholar 

  • Hasnain, S. I., Subramanian, V., & Dhanpal, K. (1989). Chemical characteristics and suspended sediment load of meltwaters from a Himalayan Glacier in India. Journal of Hydrology, 106, 99–108.

    CAS  Google Scholar 

  • Hewitt, K. (2005). The Karakoram anomaly? Glacier expansion and the “Elevation Effect” Karakoram Himalaya. Mountain Research and Development, 25, 332–340.

    Google Scholar 

  • Huh, Y. (2003). Chemical weathering and climate—A global experiment: A review. Geosciences Journal, 7, 277–288.

    Google Scholar 

  • ICIMOD. (International Centre for Integrated Mountain Development). (2001). Inventory of glaciers, glacial lakes and glacial lake outburst floods, monitoring and early warning system in the Hindu Kush-Himalayan region, Nepal. Kathmandu: UNEP/RCAP/ICIMOD.

    Google Scholar 

  • IPCC. (2014). Climate change 2014: Synthesis report. In Core Writing Team, R. K. Pachauri, & L. A. Meyer (Eds.), Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (p. 151). Geneva: IPCC.

  • Jha, P. K., Tiwari, J., Singh, U. K., Kumar, M., & Subramanian, V. (2009). Chemical weathering and associated CO2 consumption in the Godavari river basin, India. Chemical Geology, 264(1–4), 364–374.

    CAS  Google Scholar 

  • Kang, S., Xu, Y., You, Q., Flugel, W. A., Pepin, N., & Yao, T. (2010). Review of climate and cryospheric change in the Tibetan Plateau. Environmental Research Letters. https://doi.org/10.1088/1748-9326/5/1/015101.

    Article  Google Scholar 

  • Krishnaswami, S., & Singh, S. K. (1998). Silicate and carbonate weathering in the drainage basins of the Ganga-Ghaghara-Indus headwaters: Contributions to major ion and Sr isotope geochemistry. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 107, 283–291.

    CAS  Google Scholar 

  • Krishnaswami, S., Singh, S. K., & Dalai, T. K. (1999). Silicate weathering in the Himalaya: Role in contributing to major ions and radiogenic Sr to the Bay of Bengal. In B. L. K. Somayajulu (Ed.), Ocean science, trends and future directions (pp. 23–51). New Delhi: Indian National Science Academy and Akademia International.

    Google Scholar 

  • Kulkarni, A. V., Bahuguna, I. M., Rathore, B. P., Singh, S. K., Randhawa, S. S., Sood, R. K., et al. (2007). Glacial retreat in Himalaya using Indian Remote Sensing satellite data. Current Science, 92, 69–74.

    Google Scholar 

  • Kulkarni, A. V., & Karyakarte, Y. (2014). Observed changes in Himalayan glaciers. Current Science, 106(2), 237–244.

    Google Scholar 

  • Kulkarni, A. V., Rathore, B. P., Mahajan, S., & Mathur, P. (2005). Alarming retreat of Parbati glacier, Beas basin, Himachal Pradesh. Current Science, 88, 1844–1850.

    Google Scholar 

  • Kumar, K., Dumka, R. K., Miral, M. S., Satyal, G. S., & Pant, M. (2008). Estimation of retreat rate of Gangotri glacier using rapid static and kinematic GPS survey. Current Science, 94, 258–262.

    Google Scholar 

  • Kumar, R., Kumar, R., Singh, A., Singh, S., Bhardwaj, A., Kumari, A., et al. (2019). Hydro-geochemical analysis of meltwater draining from Bilare Banga glacier. Western Himalaya: Acta Geophysica. https://doi.org/10.1007/s11600-019-00262-w.

    Book  Google Scholar 

  • Kumar, K., Miral, M. S., Joshi, S., Pant, N., Joshi, V., & Joshi, L. M. (2009). Solute dynamics of meltwater of Gangotri glacier, Garhwal Himalaya, India. Environmental Geology, 58, 1151–1159.

    CAS  Google Scholar 

  • Kumar, S., Rai, H., Purohit, K. K, Rawat, B. R. S., & Mundepi, A. K. (1987). Multi disciplinary glacier expedition to Chhota Shigri glacier (pp. 1–29). New Delhi: Department of Science and Technology, Government of India, Technical Report Number 1.

  • Li, S., Lu, X. X., & Bush, R. T. (2014). Chemical weathering and CO2 consumption in the Lower Mekong River. Science of the Total Environment, 472, 162–177.

    CAS  Google Scholar 

  • Li, S., Lu, X. X., He, M., Zhou, Y., Bei, R., Li, L., et al. (2011). Major element chemistry in the upper Yangtze River: A case study of the Longchuanjiang River. Geomorphology, 129, 29–42.

    Google Scholar 

  • Lone, A., Jeelani, G., Deshpande, R. D., Kang, S., & Huang, J. (2019). Hydrochemical assessment (major ions and Hg) of meltwater in high altitude glacierized Himalayan catchment. Environmental Monitoring and Assessment, 191, 213. https://doi.org/10.1007/s10661-019-7338-y.

    Article  CAS  Google Scholar 

  • Maharana, C., Gautam, S. K., Singh, A. K., & Tripathi, J. K. (2015). Major ion chemistry of the Son River, India: Weathering processes, dissolved fluxes and water quality assessment. Journal of Earth System Science, 124(6), 1293–1309.

    CAS  Google Scholar 

  • Meybeck, M. (1986). Composition chemique des ruisseux non pollues de France. Sciences Géologiques Bulletin (Strasbourg), 39, 3–77.

    Google Scholar 

  • Moon, S., Huh, Y., Qin, J., & van Pho, N. (2007). Chemical weathering in the Hong (Red) River basin: Rates of silicate weathering and their controlling factors. Geochimica et Cosmochimica Acta, 71, 1411–1430.

    CAS  Google Scholar 

  • Moquet, J. S., Crave, A., Viers, J., Seyler, P., Armijos, E., Bourrel, L., et al. (2011). Chemical weathering and atmospheric/soil CO2 uptake in the Andean and Foreland Amazon basins. Chemical Geology, 287, 1–26.

    CAS  Google Scholar 

  • Naithani, A. K., Nainwal, H. C., Sati, K. K., & Prasad, C. (2001). Geomorphological evidences of retreat of the Gangotri glacier and its characteristics. Current Science, 80, 87–94.

    Google Scholar 

  • Noh, H., Huh, Y., Qin, J., & Ellis, A. (2009). Chemical weathering in the three rivers region of Eastern Tibet. Geochimica et Cosmochimica Acta, 73, 1857–1877.

    CAS  Google Scholar 

  • Oerlemans, J. (1986). Glaciers as indicators of a carbon dioxide warming. Nature, 320, 607–609.

    Google Scholar 

  • Oerlemans, J. (1994). Quantifying global warming from the retreat of glaciers. Science, 264, 243–245.

    CAS  Google Scholar 

  • Oliva, P., Viers, J., & Dupré, B. (2003). Chemical weathering in granitic environments. Chemical Geology, 202, 225–256.

    CAS  Google Scholar 

  • Pandey, S., & Parcha, S. K. (2013). Systematics, biometry of the species Opsidiscus from the Middle Cambrian succession of the Spiti Basin, India. Journal of the Geological Society of India, 82(4), 330–338.

    Google Scholar 

  • Pandey, S. K., Singh, A. K., & Hasnain, S. I. (1999). Weathering and geochemical processes controlling solute acquisition in Ganga Headwater- Bhagirathi River, Garhwal Himalaya, India. Aquatic Geochemistry, 5(4), 357–379.

    CAS  Google Scholar 

  • Parasher, K. C. (1990). Unpublished GSI report of field season 1989–90.

  • Parasher, K. C., & Raj, D. (1988). Unpublished GSI report of field season 1987–88.

  • Parasher, K. C., & Rapa, D. A. (1981). Unpublished GSI report of field season 1980–81.

  • Patel, K. S., Sahu, B. L., Dahariya, N. S., Bhatia, A., Patel, R. K., Matini, L., et al. (2017). Groundwater arsenic and fluoride in Rajnandgaon District, Chhattisgarh, northeastern India. Applied Water Science, 7, 1817–1826.

    CAS  Google Scholar 

  • Patel, L. K., Sharma, P., Thamban, M., & Singh, A. (2016). Debris control on glacier thinning—A case study of the Batal glacier, Chandra basin, Western Himalaya. Arabian Journal of Geosciences, 9, 309.

    Google Scholar 

  • Peters, G. P., Marland, G., Le Quere, C., Boden, T., Canadell, J. G., & Raupach, M. R. (2012). Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nature Climate Change, 2(1), 2–4.

    CAS  Google Scholar 

  • Peterson, L. C., Haug, G. H., Hughen, K. A., & Röhl, U. (2000). Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science, 290(5498), 1947–1951.

    CAS  Google Scholar 

  • Piper, A. M. (1944). A graphical procedure in the geochemical interpretation of water analysis. Transactions of the American Geophysical Union, 25, 914–923.

    Google Scholar 

  • Qiu, J. (2008). China: The third pole. Nature News, 454, 393–396.

    CAS  Google Scholar 

  • Raina, V. K., & Srivastava, D. (2008). Glacier atlas of India. Bangalore: Geological Society of India.

    Google Scholar 

  • Ramanathan, AL. (2011). Status report on Chhota Shigri Glacier (Himachal Pradesh). New Delhi: Department of Science and Technology, Ministry of Science and Technology, Himalayan Glaciology Technical Report Number 1.

  • Raymo, M. E., & Ruddiman, W. F. (1992). Tectonic forcing of late Cenozoic climate. Nature, 359, 117–122.

    CAS  Google Scholar 

  • Raymo, M. E., Ruddiman, W. F., & Froelich, P. N. (1988). Influence of late Cenozoic mountain-building on ocean geochemical cycles. Geology, 16, 649–653.

    CAS  Google Scholar 

  • Riebe, C. S., Kirchner, J. W., & Finkel, R. C. (2004). Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth Planetary Science Letters, 224, 547–562.

    CAS  Google Scholar 

  • Roy, S., Gaillerdet, J., & Allerge, J. (1999). Geochemistry of dissolved and suspended loads of the Seine river, France: Anthropogenic impact, carbonate and silicate weathering. Geochimica et Cosmochimica Acta, 63, 1277–1292.

    CAS  Google Scholar 

  • Sangewar, C. V., & Shukla, S. P. (2009). Inventory of the Himalayan Glaciers: A contribution to the international hydrological programme. Kolkata: Geological Survey of India, Special Publication Number 34.

  • Shanker, R., & Srivastava, D. (2001). Glaciated regime environmental interaction and Himalayan ecosystem. In Proceedings on snow ice (pp. 17–21). Geological Survey of India, Lucknow.

  • Sharma, S., Chand, P., Bisht, P., Shukla, A. D., Bartarya, S. K., Sundriyal, Y. P., et al. (2016a). Factors responsible for driving the glaciation in the Sarchu Plain, eastern Zanskar Himalaya, during the late Quaternary. Journal of Quaternary Science, 31(5), 495–511.

    Google Scholar 

  • Sharma, P., Patel, L. K., Ravindra, R., Singh, A., Mahalinganathan, K., & Thamban, M. (2016b). Role of debris cover to control specific ablation of adjoining Batal and Sutri Dhaka glaciers in Chandra Basin (Himachal Pradesh) during peak ablation season. Journal of Earth System Science, 125(3), 459–473.

    Google Scholar 

  • Sharma, P., Ramanathan, AL., & Pottakkal, J. G. (2013). Study of solute sources and evolution of hydrogeochemical processes of the Chhota Shigri Glacier meltwaters, Himachal Pradesh, India. Hydrological Sciences Journal, 58(5), 1128–1143.

    CAS  Google Scholar 

  • Sharma, S. K., & Subramanian, V. (2008). Hydrochemistry of the Narmada and Tapti Rivers, India. Hydrological Processes, 22, 3444–3455.

    CAS  Google Scholar 

  • Sharma, B. M., Tayal, S., Chakraborthy, P., & Bharat, G. K. (2015). Chemical characterization of meltwater from East Rathong Glacier Vis-à-Vis Western Himalayan Glaciers. In R. Joshi, K. Kumar, & L. K. S. Pani (Eds.), Dynamics of climate change and water resources of Northwestern Himalaya (pp. 181–190). Switzerland: Springer International Publishing.

    Google Scholar 

  • Sharma, M. K., Thayyen, R. J., Jain, C. K., Arora, M., & Lal, S. (2019). Assessment of system characteristics of Gangotri glacier headwater stream. Science of the Total Environment, 662, 842–851.

    CAS  Google Scholar 

  • Shin, W., Ryu, J., Park, Y., & Lee, K. (2011). Chemical weathering and associated CO2 consumption in six major river basins, South Korea. Geomorphology, 129, 334–341.

    Google Scholar 

  • Shukla, T., Sundriyal, S., Stachnik, L., & Mehta, M. (2018). Carbonate and silicate weathering in glacial environments and its relation to atmospheric CO2 cycling in the Himalaya. Annals of Glaciology, 59(77), 159–170.

    Google Scholar 

  • Singh, V. B. (2016). Hydrological characteristics and solute dynamics of meltwater draining from Chhota Shigri Glacier, Western Himalaya, India. Ph.D. thesis, Jawaharlal Nehru University, New Delhi.

  • Singh, P., Haritashya, U. K., Kumar, N., & Singh, Y. (2006). Hydrological characteristics of the Gangotri glacier, central Himalayas, India. Journal of Hydrology, 327, 55–67.

    Google Scholar 

  • Singh, P., Haritashya, U. K., Ramasastri, K. S., & Kumar, N. (2005). Diurnal variations in discharge and suspended sediment concentration, including runoff-delaying characteristics of the Gangotri glacier in the Garhwal Himalayas. Hydrological Processes, 19, 1445–1457.

    Google Scholar 

  • Singh, A. K., & Hasnain, S. I. (1998). Major ion chemistry and weathering control in a high altitude basin: Alaknanda river, Garhwal Himalaya, India. Hydrological Sciences Journal, 43(6), 825–843.

    CAS  Google Scholar 

  • Singh, A. T., Laluraj, C. M., Sharma, P., Patel, L. K., & Thamban, M. (2017). Export fluxes of geochemical solutes in the meltwater stream of Sutri Dhaka Glacier, Chandra basin, Western Himalaya. Environmental Monitoring and Assessment, 189, 555. https://doi.org/10.1007/s10661-017-6268-9.

    Article  CAS  Google Scholar 

  • Singh, A. K., Pandey, S. K., & Panda, S. (1998). Dissolved and sediment load characteristics of Kafni glacier meltwater, Pindar valley, Kumaon Himalaya. Journal of the Geological Society of India, 52, 305–312.

    CAS  Google Scholar 

  • Singh, V. B., & Ramanathan, AL. (2015). Assessment of solute and suspended sediment acquisition processes in the Bara Shigri glacier meltwater (Western Himalaya, India). Environmental Earth Sciences, 74, 2009–2018.

    CAS  Google Scholar 

  • Singh, V. B., & Ramanathan, AL. (2017a). Hydrogeochemistry of the Chhota Shigri glacier meltwater, Chandra basin, Himachal Pradesh, India: Solute acquisition processes, dissolved load and chemical weathering rates. Environmental Earth Sciences, 76, 223. https://doi.org/10.1007/s12665-017-6465-4.

    Article  CAS  Google Scholar 

  • Singh, V. B., & Ramanathan, AL. (2017b). Characterization of hydro-geochemical processes controlling major ion chemistry of the Batal glacier meltwater, Chandra basin, Himachal Pradesh, India. Proceeding of National Academy of Sciences, India Section A: Physical Sciences, 87(1), 145–153.

    CAS  Google Scholar 

  • Singh, V. B., Ramanathan, AL., & Kuriakose, T. (2015b). Hydrogeochemical assessment of meltwater quality using major ion chemistry: A case study of Bara Shigri glacier, Western Himalaya, India. National Academy Science Letters, 38(2), 147–151.

    CAS  Google Scholar 

  • Singh, V. B., Ramanathan, AL., Mandal, A., & Angchuk, T. (2015d). Transportation of suspended sediment from meltwater of the Patsio Glacier, Western Himalaya, India. Proceeding of National Academy of Sciences, India Section A: Physical Sciences, 85(1), 169–175.

    CAS  Google Scholar 

  • Singh, V. B., Ramanathan, AL., Pottakkal, J. G., & Kumar, M. (2014). Seasonal variation of the solute and suspended sediment load in Gangotri glacier meltwater, central Himalaya, India. Journal of Asian Earth Sciences, 79, 224–234.

    Google Scholar 

  • Singh, V. B., Ramanathan, AL., & Sharma, P. (2015c). Major ion chemistry and assessment of weathering processes of the Patsio glacier meltwater, Western Himalaya, India. Environmental Earth Sciences, 73, 387–397.

    CAS  Google Scholar 

  • Singh, V. B., Ramanathan, AL., Sharma, P., & Pottakkal, J. G. (2015a). Dissolved ion chemistry and suspended sediment characteristics of meltwater draining from Chhota Shigri glacier, Western Himalaya, India. Arabian Journal of Geosciences, 8, 281–293.

    CAS  Google Scholar 

  • Spence, J., & Telmer, K. (2005). The role of sulfur in chemical weathering and atmospheric CO2 fluxes: Evidence from major ions, δ13CDIC, and δ34SSO4 in rivers of the Canadian Cordillera. Geochimica et Cosmochimica Acta, 69(23), 5441–5458.

    CAS  Google Scholar 

  • Sun, H., Han, J., Li, D., Zhang, S., & Lu, X. (2010). Chemical weathering inferred from riverine water chemistry in the lower Xijiang basin, South China. Science of the Total Environment, 408, 4749–4760.

    CAS  Google Scholar 

  • Thilagavathi, R., Chidambaram, S., Prasanna, M. V., Thivya, C., & Singaraja, C. (2012). A study on groundwater geochemistry and water quality in layered aquifers system of Pondicherry region, southeast India. Applied Water Science, 2, 253–269.

    CAS  Google Scholar 

  • Tiwari, S., Kumar, A., Gupta, A. K., Verma, A., Bhambri, R., Sundriyal, S., et al. (2018). Hydrochemistry of meltwater draining from Dokriani Glacier during early and late ablation season, West Central Himalaya. Himalayan Geology, 39(1), 121–132.

    Google Scholar 

  • Tranter, M., Brown, G. H., Raiswell, R., Sharp, M. J., & Gurnell, A. M. (1993). A conceptual model of solute acquisition by Alpine glacier meltwaters. Journal of Glaciology, 39(133), 573–581.

    CAS  Google Scholar 

  • Tranter, M., Sharp, M. J., Lamb, H. R., Brown, G. H., Hubbard, B. P., & Willis, I. C. (2002). Geochemical weathering at the bed of Haut Glacier d’Arolla, Switzerland—A new model. Hydrological Processes, 16, 959–993.

    Google Scholar 

  • Vohra, C. P. (1996). Himalayan glacier research in India. In Proceedings 1st working group meeting of Himalayan Glaciology (Kathmandu).

  • Wadham, J. L., Hodson, A. J., Tranter, M., & Dowdeswell, J. A. (1998). The hydrochemistry of meltwater draining a polythermal-based, high Arctic glacier, south Svalbard: I. The ablation season. Hydrological Processes, 12, 1825–1849.

    Google Scholar 

  • Wadham, J. L., Tranter, M., & Dowdeswell, J. A. (2000). Hydrochemistry of meltwaters draining a polythermal-based, high-Arctic glacier, south Svalbard: II. Winter and early spring. Hydrological Processes, 14, 1767–1786.

    Google Scholar 

  • Wagnon, P., Linda, A., Arnaud, Y., Kumar, R., Sharma, P., Vincent, C., et al. (2007). Four years of mass balance on Chhota Shigri glacier (Himachal Pradesh, India), a new benchmark glacier in the Western Himalaya, India. Journal of Glaciology, 53(183), 603–611.

    Google Scholar 

  • Wang, L., Zhang, L., Cai, W., Wang, B., & Yu, Z. (2016). Consumption of atmospheric CO2 via chemical weathering in the Yellow River basin: The Qinghai-Tibet Plateau is the main contributor to the high dissolved inorganic carbon in the Yellow River. Chemical Geology, 430, 34–44.

    CAS  Google Scholar 

  • West, A. J., Galy, A., & Bickle, M. (2005). Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters, 235, 211–228.

    CAS  Google Scholar 

  • Wu, X. B. (2018). Diurnal and seasonal variation of glacier meltwater hydrochemistry in Qiyi glacierized catchment in Qilian Mountains, Northwest China: Implication for chemical weathering. Journal of Mountain Science, 15(5), 1035–1045.

    Google Scholar 

  • Wu, W., Xu, S., Yang, J., & Yin, H. (2008). Silicate weathering and CO2 consumption deduced from seven Chinese rivers originating in the Qinghai-Tibet plateau. Chemical Geology, 249, 307–320.

    CAS  Google Scholar 

  • Zhang, T. (2007). Perspectives on environmental study of response to climatic and land cover/land use change over the Qinghai-Tibetan Plateau: An introduction. Arctic, Antarctic, and Alpine Research, 39, 631–634.

    Google Scholar 

  • Zhu, B., Yu, J., Qin, X., Rioual, P., Liu, Z., Zhang, Y., et al. (2013). The significance of mid-latitude rivers for weathering rates and chemical fluxes: Evidence from northern Xinjiang rivers. Journal of Hydrology, 486, 151–174.

    CAS  Google Scholar 

Download references

Acknowledgements

Virendra Bahadur Singh is thankful to Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, for funding this study (NPDF project/reference no: PDF/2016/000286). We are also thankful to Mr. Kalyan Biswal for his partial help in the analysis of few hydrogeochemical parameters in the meltwater samples. Dr. Vikas Kamal is acknowledged for the preparation of map of the Batal glacier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virendra Bahadur Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.B., Keshari, A.K. & Ramanathan, A. Major ion chemistry and atmospheric CO2 consumption deduced from the Batal glacier, Lahaul–Spiti valley, Western Himalaya, India. Environ Dev Sustain 22, 6585–6603 (2020). https://doi.org/10.1007/s10668-019-00501-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-019-00501-6

Keywords

Navigation