Skip to main content
Log in

Temporal Moment Analysis of Multi-Species Radionuclide Transport in a Coupled Fracture-Skin-Matrix System with a Variable Fracture Aperture

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

This paper presents an analysis using temporal moments to study multi-species radionuclide transport along a single fracture with variable fracture aperture in a fracture-skin-matrix system. In the present study, a decay chain having three elements is considered and transport of each member in the decay chain is modeled by solving a coupled system of partial differential equations for fracture, fracture-skin, and rock matrix using explicit finite difference method. Having obtained the concentration distribution, lower order temporal moments of radionuclide distribution are computed to analyze the effective velocity and macro-dispersion coefficient of radionuclides in the fracture. In the present study, effect of varying fracture aperture on transport characteristics of radionuclides is also analyzed. It is found that the fracture aperture variation profile has significant impact on radionuclide distribution along the fracture. Sensitivity analysis is carried out in a fracture-skin-matrix system with sinusoidal fracture aperture to study the effect of various parameters like fracture aperture thickness, fracture-skin porosity, fracture-skin diffusion coefficient, flow rate, radioactive decay constant, and Freundlich sorption isotherm exponent on transport characteristics of radionuclide. The results suggest that the above mentioned parameters significantly influence concentration, distribution, mobility, and effective macro-dispersion coefficient of radionuclides along the fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abdel-Salam, A., & Chrysikopoulos, C. V. (1995). Modeling of colloid and colloid-facilitated contaminant transport in a two-dimensional fracture with spatially variable aperture. Transport in Porous Media, 20, 197–221.

    Article  CAS  Google Scholar 

  2. Alexander, A, R., Smellie, J. A. T., Pitty, A., F. (2011). Introduction. Ch 1 In: Pitty A.F. (ed). A natural analogue study of cement buffered, hyperalkaline groundwaters and their interaction with a repository host rock IV: an examination of the Khushaym Matruk (central Jordan) and Maqarin (northern Jordan) sites. NDA Technical Report, NDA, Moor Row.

  3. Bardsley, W. E. (2003). Temporal moments of a tracer pulse in a perfectly parallel flow system. Advances in Water Resource Research, 26(6), 599–607.

    Article  Google Scholar 

  4. Barenblatt, G. I., Zheltov, I. P., & Kochina, I. N. (1960). Basics concepts in the theory of seepage of homogeneous liquids in fissured rocks. Journal of Applied Mathematics and Mechanics, 24, 1286–1303.

    Article  Google Scholar 

  5. Bauer, P., Attinger, S., & Kinzelbach, W. (2001). Transport of a decay chain in homogenous porous media: analytical solutions. Journal of Contaminant Hydrology, 49, 217–239.

    Article  CAS  Google Scholar 

  6. Bibby, R. (1981). Mass transport of solutes in dual-porosity media. Water Resources Research, 17(4), 1075–1081.

    Article  Google Scholar 

  7. Bodin, J., Delay, F., & de Marsily, G. (2003). Solute transport in a single fracture with negligible matrix permeability: I. Fundamental mechanisms. Hydrogeology Journal, 11, 418–433.

    Article  CAS  Google Scholar 

  8. Bosma, W. J. P., & van der Zee, S. E. A. T. M. (1995). Dispersion of a continuously injected, nonlinearly adsorbing solute in chemically or physically heterogeneous porous formations. Journal of Contaminant Hydrology, 18(3), 181–198.

    Article  CAS  Google Scholar 

  9. Cunningham, J., & Roberts, P. V. (1998). Use of temporal moments to investigate the effects of non-uniform grain-size distribution on the trans- port of sorbing solutes. Water Resources Research, 34, 1415–1425.

    Article  CAS  Google Scholar 

  10. Cvetkovic, V., Selroos, J. O., & Cheng, H. (1999). Transport of reactive tracers in rock fractures. Journal of Fluid Mechanics, 378, 335–356.

    Article  CAS  Google Scholar 

  11. Dijk, P., & Berkowitz, B. (1998). Precipitation and dissolution of reactive solutes in fractures. Water Resources Research, 34(3), 457–470.

    Article  CAS  Google Scholar 

  12. Driese, S. G., McKay, L. D., & Penfield, C. P. (2001). Lithologic and pedogenic influences on porosity distribution and groundwater flow in fractured sedimentary saprolite: a new application of environmental sedimentology. Journal of Sedimentary Research, 71(5), 843–857.

    Article  CAS  Google Scholar 

  13. El Samad, O., Aoun, M., Nsouli, B., Khalaf, G., & Hamze, M. (2014). Investigation of the radiological impact on the coastal environment surrounding a fertilizer plant. Journal of Environmental Radioactivity, 133, 69–74.

    Article  Google Scholar 

  14. Fu, L., Milliken, K. L., & Sharp, J. M. (1994). Porosity and permeability variations in the fractured and liesegang-banded Breathitt Sandstone (Middle Pennsylvanian), eastern Kentucky: diagenetic controls and implications for modelling dual porosity systems. Journal of Hydrology, 154, 351–381.

    Article  Google Scholar 

  15. Gale J E., Rouleau A., Atkinson L C. (1985). Hydraulic properties of fractures. Proceedings, Int. Assoc. of Hydrogeologists, Memoirs, Tucson Congress, 17:1–11.

  16. Garner T T., Sharp J M. (2004). Hydraulic properties of granitic fracture skins and their 540 effects on solute transport, In: Proceedings, 2004 U.S EPA/NGWA, Fractured rock 541 conference: State of the science and Measuring success in remediation, national 542 Groundwater Association. Dublin pp 664–678.

  17. Govindarajau, R. S., & Das, B. S. (2007). Moment analysis for sub-surface hydrologic applications. Dordrecht: Springer.

    Google Scholar 

  18. Grisak, G. E., & Pickens, J. F. (1980). Solute transport through fractured media. I: the effect of matrix diffusion. Water Resources Research, 16(4), 719–730.

    Article  Google Scholar 

  19. Grisak, G. E., & Pickens, J. F. (1980). Solute transport through fractured media. II: column study of fractured till. Water Resources Research, 16(4), 731–739.

    Article  Google Scholar 

  20. Kreft, A., & Zuber, A. (1978). On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions. Chemical Engineering Science, 33, 1471–1480.

    Article  CAS  Google Scholar 

  21. Kreisel I., Sharp J M. (1996). Fracture skins in the Brushy Canyon Formation. In: DeMis W. D., Cole A.G. (Eds.). The brushy canyon play in outcrop and subsurface: concepts and examples. PBS-SEPM: 96–38, Midland: 147–152.

  22. Landrum M T. (2000) Hydrogeologic properties of fracture skins and their effects on radionuclide transport: Thesis (Masters).The University of Texas: Austin.

  23. Leube PC., Nowak W., Schneider G. (2012). Temporal moments revisited: why there is no better way for physically based model reduction in time. Water Resources Research 48 doi: 10.1029/2012WR011973.

  24. Lichtner, P. C. (2000). Critique of dual continuum formulations of multicomponent reactive transport in fractured porous media. Geophysical Monograph, 122, 281–298.

    Google Scholar 

  25. Luo, J., Cirpka, O. A., Dentz, M., & Carrera, J. (2008). Temporal moments for transport with mass transfer described by an arbitrary memory function in heterogeneous media. Water Resources Research, 44, 1–7.

    Google Scholar 

  26. Maloszewski, P., & Zuber, A. (1985). On the theory of tracer experiments in fissured rocks with a porous matrix. Journal of Hydrology, 79, 333–358.

    Article  CAS  Google Scholar 

  27. Maloszewski, P., & Zuber, A. (1990). Mathematical modeling of tracer behavior in short-term tracer experiments and fissured rocks. Water Resources Research, 26, 1517–1528.

    Article  CAS  Google Scholar 

  28. Moench, A. F. (1984). Double-porosity models for a fissured groundwater reservoir with fracture skin. Water Resources Research, 20, 831–846.

    Article  Google Scholar 

  29. Moench, A. F. (1985). Convergent radial dispersion in a double-porosity aquifer with fracture skin: analytical solution and application to a field experiment in fractured chalk. Water Resources Research, 31, 1823–1835.

    Article  Google Scholar 

  30. Naff, R. L. (1992). Arrival times and temporal moments of breakthrough curves for an imperfectly stratified aquifer. Water Resources Research, 28, 53–68.

    Article  CAS  Google Scholar 

  31. Natarajan, N., & Suresh Kumar, G. (2010). Radionuclide and colloid co-transport in a coupled fracture-skin-matrix system. Colloids and Surfaces, A: Physiochemical and Engineering Aspects, 370, 49–57.

    Article  CAS  Google Scholar 

  32. Neiva, M. R., Carvalho, P. C. S., Antunes, I. M. H. R., Silva, M., Santos, M. V. G., Cabral, A. C. T., Pinto, M. M. S., & Cunha, P. P. (2014). Contaminated water, stream sediments and soils close to the abandoned Pinhal do Souto uranium mine, central Portugal. Journal of Geochemical Exploration, 136, 102–117. doi:10.1016/j.gexplo.2013.10.014.

    Article  CAS  Google Scholar 

  33. Neretneik, I. (1980). Diffusion in the rock matrix: an important factor in radionuclide retardation? Journal of Geophysical Research, 85(B8), 4379–4397.

    Article  Google Scholar 

  34. Neretneiks, I. (1983). A note on fracture flow dispersion mechanisms in the ground. Water Resources Research, 19(2), 364–370.

    Article  Google Scholar 

  35. Phyu T. (2002). Transient modeling of contaminant transport in dual porosity media with fracture skins: Thesis (Masters).The University of Texas at Astin.

  36. Ramuson, A. (1985). Analysis of hydrodynamic dispersion in discrete aquifer networks using the method of moments. Water Resources Research, 21, 1677–1683.

    Article  Google Scholar 

  37. Renu, V., & Suresh Kumar, G. (2012). Numerical modeling and spatial moment analysis of solute mobility and spreading in a coupled fracture-skin-matrix system. Geotechnical and Geological Engineering, 30(6), 1289–1302.

    Article  Google Scholar 

  38. Renu, V., & Suresh Kumar, G. (2014). Temporal moment analysis of solute transport in a coupled fracture-skin-matrix system. Sadhana, 39(2), 487–509.

    Article  Google Scholar 

  39. Robinson N. I., Sharp Jr J M. (1997). Analytical solution for contaminant transport in a 601 finite set of parallel fractures with matrix diffusion. C.S.I.R.O. Mathematical and 602 Information Sciences Report CMIS-C23.

  40. Robinson, N. I., Sharp, J. M., & Ilan, K. (1998). Contaminant transport in a set of parallel fractures with fracture skin. Journal of Contaminant Hydrology, 31, 83–109.

    Article  CAS  Google Scholar 

  41. Schrauf, T. W., & Evans, D. D. (1986). Laboratory studies of gas flow through a single natural fracture. Water Resources Research, 22, 38–1050.

    Article  Google Scholar 

  42. Sekhar, M., & Suresh Kumar, G. (2005). Modeling transport of linearly sorbing solutes in a single fracture: asymptotic behavior of solute velocity and dispersivity. Geotechnical and Geological Engineering, 24(1), 183–201.

    Article  Google Scholar 

  43. Sekhar, M., Suresh Kumar, G., & Misra, D. (2006). Numerical modeling and analysis of solute velocity and macrodispersion for linearly and nonlinearly sorbing solutes in a single fracture with matrix diffusion. Journal of Hydrological Engineering, 11(4), 319–328.

    Article  Google Scholar 

  44. Sharma, P. K., Sekhar, M., Srivastava, R., & Ojha, C. S. P. (2012). Temporal moments for reactive transport through fractured impermeable/permeable formations. Journal of Hydrological Engineering, 17, 1302–1314.

    Article  Google Scholar 

  45. Sharp J M. (1993). Fractured aquifers/reservoirs; approaches, problems, and opportunities. In: Banks D., Banks S. (Eds.) Hydrogeology of hard rocks, memoires of the 24th Cong. International Assoc. Hydrogeologists. Oslo, Norway, 24, 615(1), 23–38.

  46. Sharp, J. M., Robinson, N. I., Smyth-Boulton, R. C., & Milliken, K. L. (1995). Fracture skin effects in groundwater transport. In H. P. Rossmanith (Ed.), Mechanics of jointed and faulted rock (pp. 449–454). Rotterdam: A.A. Balkeme.

    Google Scholar 

  47. Singh, J., Singh, H., Singh, S., Bajwa, B. S., & Sonkawade, R. G. (2009). Comparative study of natural radioactivity levels in soil samples from the Upper Siwaliks and Punjab, India using gamma-ray spectrometry. Journal of Environmental Radioactivity, 100(1), 94–98.

    Article  CAS  Google Scholar 

  48. Suresh Kumar, G. (2008). Effect of sorption intensities on dispersivity and macro-dispersion coefficient in a single fracture with matrix diffusion. Hydrogeology Journal, 16(2), 235–249.

    Article  Google Scholar 

  49. Suresh Kumar, G. (2009). Influence of sorption intensity on solute mobility in a fractured formation. Journal of Environmental Engineering, 135(1), 1–7.

    Article  Google Scholar 

  50. Suresh Kumar, G. (2014). Mathematical modeling of groundwater flow and solute transport in a saturated fractured rock using dual-porosity approach. Journal of Hydrological Engineering, 10, 1061. doi:1943–5584.0000986.

    Google Scholar 

  51. Suresh Kumar, G., Sekhar, M., & Misra, D. (2011). Spatial and temporal moment analyses of decaying solute transport in a single fracture with matrix diffusion. Journal of Petroleum Geosystem Science and Engineering, 1(1), 1–20.

    Google Scholar 

  52. Tang, D. H., Frind, E. O., & Sudicky, E. A. (1981). Contaminant transport in fractured porous media: analytical solution for a single fracture. Water Resources Research, 17(3), 467–480.

    Article  Google Scholar 

  53. Taskin, H., Karavus, M., Ay, A., Topuzoglu, A., Hidiroglu, S., & Karahan, G. (2009). Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. Journal of Environmental Radioactivity, 100(1), 49–53.

    Article  CAS  Google Scholar 

  54. Tsang, C. F., Barnichon, B. D., Birkholzer, J., Li, X. L., Liu, H. H., & Sillen, X. (2012). Coupled thermo-hydro-mechanical processes in the near field of a high-level radioactive waste repository in clay formations. International Journal Rock of Mechanics and Mining Engineering, 2012(49), 31–44.

    Article  Google Scholar 

  55. Tsang, Y. W., & Tsang, C. F. (2001). A particle-tracking method for advective transport in fractures with diffusion into finite matrix blocks. Water Resources Research, 37(3), 831–835.

    Article  Google Scholar 

  56. Valocchi, A. J. (1985). Validity of the local equilibrium assumption for modeling sorbing solute transport through homogeneous soil. Water Resources Research, 21, 808–820.

    Article  CAS  Google Scholar 

  57. Van den Akker, B. P., & Ahn, J. (2014). 1-D modeling of radionuclide transport via heterogeneous geological formations for arbitrary length decay chains using numerical inversion of Laplace transforms. Annals of Nuclear Energy, 63, 763–773.

    Article  Google Scholar 

  58. Warren, J., & Root, P. (1963). The behavior of naturally fractured reservoirs. Transactions of the Society of Mining Engineers of AIME, 228, 245–255.

    Google Scholar 

  59. Yeo, I. W. (2001). Effect of fracture roughness on solute transport. Geosciences Journal, 5, 145–151.

    Article  Google Scholar 

  60. Zimmerman, M. D., Bennett, P. C., Sharp, J. M., & Choi, W. J. (2002). Experimental determination of sorption in fractured flow systems. Journal of Contaminant Hydrology, 58(12), 51–77.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the corresponding editor as well as the anonymous reviewer for their valuable comments and suggestions to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Suresh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renu, V., Suresh Kumar, G. Temporal Moment Analysis of Multi-Species Radionuclide Transport in a Coupled Fracture-Skin-Matrix System with a Variable Fracture Aperture. Environ Model Assess 21, 547–562 (2016). https://doi.org/10.1007/s10666-016-9515-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-016-9515-5

Keywords

Navigation