Skip to main content
Log in

Modeling rhizofiltration: heavy-metal uptake by plant roots

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

The discovery of phytoaccumulation potential of plant species has led to its application for remediation of heavy-metal-contaminated soil and wastewater, which is termed as phytoextraction/rhizofiltration. For prediction, analysis, planning and cost-effective design of such systems, mathematical models not only are used as a screening tool but also provide optimal parameters like harvesting time, irrigation schedule, etc. Several laboratory and field scale studies have been carried out in the past, and mathematical expressions have been developed by various researchers for different phenomena like metal adsorption in soil, plant root growth with time, moisture and metal uptake by plant root, moisture movement in unsaturated zone, soil moisture relationship, etc. The complete design of any such phytoremediation program would require the knowledge of behavior of heavy-metal movement in soil, water and plant root system. In this paper, a model for simulating heavy-metal dynamics in soil, water and plant root system is developed and discussed. The governing non-linear partial differential equation is solved numerically by implicit finite difference method using Picard's iterative technique, and the formulation has been illustrated using a characteristic example. The source code is written in MATLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Boyd, in: Plants that Hyperaccumulate Heavy Metals, ed. R.R. Brooks (CAB International, Willingford, U.K., 1998) pp. 181–201.

    Google Scholar 

  2. R.R. Brooks, J. Lee, R.D. Reeves and T. Jaffre, J. Geochem. Explor. 7 (1977) 49–57.

    Article  CAS  Google Scholar 

  3. A.J.M. Baker, S.P. McGrath, R.D. Reeves and J.A.C. Smith, in: Phytoremediation of Contaminated Soil and Water, eds. N. Terry and G.S. Banuelos (Lewis, Boca Raton, FL, 1999) pp. 85–107.

    Google Scholar 

  4. V. Dushenkov, P.B.A.N. Kumar, H. Motto and I. Raskin, Environ. Sci. Technol. 29 (1995) 1239–1245.

    Article  CAS  Google Scholar 

  5. J.L. Schnoor, “Phytoremediation”, Technology Evaluation Report, E Series: TE. 01 (1998), Prepared for Groundwater Remediation Technologies Analysis Center, Pittsburgh, USA, 1997, p. 37.

  6. F.J. Molz, I. Remson, A.A. Fungaroli and R.L. Drake, Water Resour. Res. 4 (1968) 1161–1169.

    Google Scholar 

  7. D. Hillel, C.G.E.M. van Beek and H. Talpaz, Soil Sci. 120 (1975) 385–399.

    Google Scholar 

  8. H.R. Rowse, W.K. Mason and H.M. Taylor, Soil Sci. 130 (1983) 218–224.

    Article  Google Scholar 

  9. F.J. Molz and I. Remson, Water Resour. Res. 6 (1970) 1346–1356.

    CAS  Google Scholar 

  10. S.R. Singh and A. Kumar, Agric. Eng., ISAE 22(2) (1985) 50–74.

    Google Scholar 

  11. M.A. Marino and J.C. Tracy, J. Irrig. Drain. Eng. 114 (1988) 558–604.

    Article  Google Scholar 

  12. P. Verma, K.V. George, H.V. Singh, T.P. Mathew and R.N. Singh, Int. J. Environ. Stud. 61(1) (2004) 39–48.

    Article  Google Scholar 

  13. T.J. Christensen, Water Air Soil Pollut. 26 (1985) 255–264.

    Article  CAS  Google Scholar 

  14. T.J. Christensen, Water Air Soil Pollut. 34 (1987) 305–314.

    Article  CAS  Google Scholar 

  15. P.H. Nye and F.H.C. Marriott, Plant Soil 30 (1969) 459–472.

    Article  Google Scholar 

  16. N. Classen and S.A. Barber, J. Agron. 68 (1976) 961–964.

    Article  Google Scholar 

  17. E. Hoffland, H.S. Bolemhof, P.A. Leffelaar, G.R. Findenegg and J.A. Nelemans, Plant Soil 124 (1990) 149–155.

    Article  CAS  Google Scholar 

  18. L.A. Richards, Physics 1 (1931) 318–333.

    Article  Google Scholar 

  19. M.N. Nimha and R.J. Hanks, Soil Sci. Soc. Am. Proc. 37 (1973) 522–527.

    Article  Google Scholar 

  20. P.A.C. Raats, J. Hydrol. 99 (1975) 297–306.

    Google Scholar 

  21. J.C. Hoogland, R.A. Fedes and C. Belmans, Acta Hortic. 119 (1981) 123–131.

    Google Scholar 

  22. R.J. Prasad, J. Hydrol. 99 (1988) 297–306.

    Article  Google Scholar 

  23. S. Mathur, Int. J. Numer. Anal. Methods Geomech. 23 (1999) 1349–1357.

    Article  Google Scholar 

  24. F.J. Molz, Water Resour. Res. 17 (1981) 1245–1260.

    Article  Google Scholar 

  25. H. Borg and D.W. Grimes, Trans. ASAE 29(1) (1986) 194–197.

    Google Scholar 

  26. M.Th. Van Genuchten and D.R. Nielsen, Ann. Geophys. 3 (1985) 615–628.

    Google Scholar 

  27. M.Th. Van Genuchten, Soil Sci. Soc. Am. J. 44 (1980) 892–898.

    Article  Google Scholar 

  28. W.M. Cornelis, J. Ronsyn, M.V. Meirvenne and R. Hartmann, Soil Sci. Am. J. 65 (2001) 638–648.

    Article  CAS  Google Scholar 

  29. H. Vereecken, J. Maes, J. Feyen and P. Darius, Soil Sci. 148 (1989) 389–403.

    Article  Google Scholar 

  30. J. Bear, Dynamics of Fluids in Porous Media (American Elsevier Publishing Company, Inc., New York, USA, 1979) p. 482.

    Google Scholar 

  31. S. Rao and S. Mathur, J. Irrig. Drain. Eng. 120 (1994) 89–96.

    Article  Google Scholar 

  32. H.F. Wang and M.P. Anderson, Introduction to Groundwater Modeling (W.H. Freeman and Company, San Francisco, USA, 1982) pp. 180–181.

    Google Scholar 

  33. J.L. Morel, in: Soil Ecotoxicology, eds. J. Tarradellas, G. Bitton and D. Rossel (CRC Lewis Publishers, New York, USA, 1997) pp. 141–176.

    Google Scholar 

  34. R.S. Morrison, R.R. Brooks and R.D. Reeves, Plant Sci. Lett. 17 (1980) 451–457.

    Article  CAS  Google Scholar 

  35. G.L. Mullins, L.E. Sommers and S.A. Barber, Soil Sci. Soc. Am. J. 50 (1986) 1245–1250.

    Article  CAS  Google Scholar 

  36. F.S. George, Differential Equations with Applications and Historical Notes (McGraw-Hill, New York, 1991) pp. 538–555.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Verma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, P., George, K.V., Singh, H.V. et al. Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ Model Assess 11, 387–394 (2006). https://doi.org/10.1007/s10666-005-9039-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-005-9039-x

Keywords

Navigation