Skip to main content
Log in

Flows of granular material in two-dimensional channels

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Secondary cone-type crushing machines are an important part of the aggregate production process. These devices process roughly crushed material into aggregate of greater consistency and homogeneity. We apply a continuum model for granular materials (Jop et al., Nature 441:727–730, 2006) to flows of granular material in representative two-dimensional channels, applying a cyclic applied crushing stress in lieu of a moving boundary. Using finite element methods, we solve a sequence of quasi-steady fluid problems within the framework of a pressure-dependent particle size problem in time. Upon approximating output quantity and particle size, we adjust the frequency and strength of the crushing stroke to assess their impacts on the output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Jop P, Forterre Y, Pouliquen O (2006) A consitutive law for dense granular flows. Nature 441:727–730

    Article  ADS  Google Scholar 

  2. Evertsson CM (1999) Modelling of flow in cone crushers. Miner Eng 12(12):1479–1499

    Article  Google Scholar 

  3. Evertsson CM (2000) Cone crusher performance. PhD Thesis, Department of Machine and Vehicle Design, Chalmers University of Technology

  4. Broadbent SR, Callcott TG (1956) A new analysis of coal breakage processes. J Inst Fuel 29:524–539

    MATH  Google Scholar 

  5. Lindqvist M, Evertsson CM (2003) Prediction of worn geometry in cone crushers. Miner Eng 16(12):1355–1361

    Article  Google Scholar 

  6. Lindqvist M, Evertsson CM (2004) Improved flow- and pressure model for cone crushers. Miner Eng 17(11–12):1217–1225

    Article  Google Scholar 

  7. Bengtsson M, Evertsson CM (2006) An empirical model for predicting flakiness in cone crushers. J Miner Process 79:49–60

    Article  Google Scholar 

  8. Lindqvist M, Evertsson CM (2006) Development of wear model for cone crushers. Wear 261:435–442

    Article  Google Scholar 

  9. Lindqvist M, Evertsson M, Chenje T, Radziszewski P (2006) Influence of particle size on wear rate in compressive crushing. Miner Eng 19:1328–1335

    Article  Google Scholar 

  10. Hulthén E, Evertsson CM (2009) Algorithm for dynamics cone crusher control. Miner Eng 22:296–303

    Article  Google Scholar 

  11. Lee E, Evertsson CM (2011) A comparative study between cone crushers and theoretically optimal crushing sequences. Miner Eng 24(3–4):188–194

    Article  Google Scholar 

  12. Huang D, Fan X, Wu D, Yao F (2007) Multi-objective planning of cone crusher chamber, output and size reduction. Miner Eng 20:163–172

    Article  Google Scholar 

  13. Huang D, Fan X, Wu D, Yao F (2008) Research on cone crusher chamber geometry. China Mech Eng 19(17):2041–2045,2049

    Google Scholar 

  14. Dong G, Fan X, Huang D (2009) Analysis and optimization of cone crusher performance. Miner Eng 22(12):1091–1093

    Article  Google Scholar 

  15. Dong G, Huang D, Fan X (2009) Cone crusher chamber optimization using multiple constraints. Int J Miner Process 93:204–208

    Article  Google Scholar 

  16. Goldhirsch I (2003) Rapid granular flows. Annu Rev Fluid Mech 35:267–293

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Nedderman RM (1992) Statics and kinematics of granular materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  18. Janssen HA (1895) Versuche über getreidedruck in silozellen. Zeitschr. d. Vereines deutscher Ingenieure 39:1045

    Google Scholar 

  19. Sperl M (2006) Experiments on corn pressure in silo cells—translation and comment of Janssen’s paper from 1895. Granul Matter 8:59–65

    Article  MATH  Google Scholar 

  20. Boutreux T, Raphaël E, de Gennes PG (1997) Propagation of a pressure step in a granular material: the role of wall friction. Phys Rev E 55(5):5759–5773

    Article  ADS  MathSciNet  Google Scholar 

  21. de Gennes PG (1999) Granular matter: a tentative view. Rev Mod Phys 71(2):S374–S382

    Article  Google Scholar 

  22. Ertaş D, Halsey TC (2002) Granular gravitational collapse and chute flow. Europhys Lett 60(6):931–937

    Article  ADS  Google Scholar 

  23. Dean EJ, Glowinski R, Guidoboni G (2007) On the numerical simulation of Bingham visco-plastic flow: old and new results. J Non-Newton Fluid Mech 142:36–62

    Article  MATH  Google Scholar 

  24. Papanastasiou TC (1987) Flows of materials with yield. J Rheol 31(5):385–404

    Article  ADS  MATH  Google Scholar 

  25. Papanastasiou TC, Boudouvis AG (1997) Flows of viscoplastic materials: models and computations. Comput Struct 64(1–4):677–694

    Article  MATH  Google Scholar 

  26. Kinderlehrer D (1978) Variational inequalities and free boundary problems. Bull Am Math Soc 84(1):7–26

    Article  MathSciNet  MATH  Google Scholar 

  27. Huilgol RR (2002) Variational inequalities in the flows of yield stress fluids including inertia: theory and applications. Phys Fluids 14(3):1269–1283

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Domnik B, Pudasaini SP (2012) Full two-dimensional rapid chute flows of simple viscoplastic granular materials with a pressure-dependent dynamic slip-velocity and their numerical solutions. J Non-Newton Fluid Mech 173–174:72–86

    Article  Google Scholar 

  29. Bearman RA, Briggs CA (1998) The active use of crushers to control product requirements. Miner Eng 11(9):849–859

    Article  Google Scholar 

  30. Ide JM (1936) Comparison of statically and dynamically determined Young’s modulus of rocks. Proc Natl Acad Sci 22(2):81–92

    Article  ADS  Google Scholar 

  31. Roquet N, Saramito P (2008) An adaptive finite element method for viscoplastic flows in a square pipe with stick-slip at the wall. J Non-Newton Fluid Mech 155:101–115

    Article  MATH  Google Scholar 

  32. Rao IJ, Rajagopal KR (1999) The effect of the slip boundary condition on the flow of fluids in a channel. Acta Mech 135:113–126

    Article  MathSciNet  MATH  Google Scholar 

  33. Gatica GN, Maischak M, Stephan EP (2011) Numerical of a transmission problem with Signorini contact using mixed-FEM and BEM. ESAIM 45:779–802

    Article  MathSciNet  MATH  Google Scholar 

  34. de Souza Mendes PR, Naccache MF, Varges PR (2007) Flow of viscoplastic liquids through axisymmetric expansions–contractions. J Non-Newton Fluid Mech 142(1–3):207–217

    Article  MATH  Google Scholar 

  35. Daouadji A, Hicher P-Y (2009) An enhanced constitutive model for crushable granular materials. Int J Numer Anal Methods Geomech 34:555–580

    MATH  Google Scholar 

  36. Bika DG, Gentzler M, Michaels JN (2001) Mechanical properties of agglomerates. Powder Technol 117:98–112

    Article  Google Scholar 

  37. Shipway PH, Hutchings IM (1993) Attrition of brittle spheres by fracture under compressionand impact loading. Powder Technol 26:23–30

    Article  Google Scholar 

  38. Couroyer C, Ning Z, Ghadiri M, Brunard N, Kolenda F, Bortzmeyer D, Laval P (1999) Breakage of macroporous alumina beads under compressive loading: simulation and experimental validation. Powder Technol 105:57–65

    Article  Google Scholar 

  39. Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universitt Hamburg 36:9–15

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the EPSRC and Terex Pegson, especially Ian Boast and Tim Cummings of Terex Pegson, for their promotion and sponsorship of this CASE project. We also thank the the University of Nottingham for their wonderful staff and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Bain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bain, O., Billingham, J., Houston, P. et al. Flows of granular material in two-dimensional channels. J Eng Math 98, 49–70 (2016). https://doi.org/10.1007/s10665-015-9810-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-015-9810-1

Keywords

Mathematics Subject Classification

Navigation