Skip to main content
Log in

Generalized squirming motion of a sphere

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A number of swimming microorganisms, such as ciliates (Opalina) and multicellular colonies of flagellates (Volvox), are approximately spherical in shape and swim using beating arrays of cilia or short flagella covering their surfaces. Their physical actuation on the fluid may be mathematically modeled as the generation of surface velocities on a continuous spherical surface—a model known in the literature as squirming, which has been used to address various aspects of the biological physics of locomotion. Previous analyses of squirming assumed axisymmetric fluid motion and hence required all swimming kinematics to take place along a line. In this paper we generalize squirming to three spatial dimensions. We derive analytically the flow field surrounding a spherical squirmer with arbitrary surface motion and use it to derive its three-dimensional translational and rotational swimming kinematics. We then use our results to physically interpret the flow field induced by the swimmer in terms of fundamental flow singularities up to terms decaying spatially as \({\sim } 1/r^3\). Our results will make it possible to develop new models in biological physics, in particular in the area of hydrodynamic interactions and collective locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brennen C, Winet H (1977) Fluid mechanics of propulsion by cilia and flagella. Annu Rev Fluid Mech 9:339–398

  2. Vogel S (1996) Life in moving fluids: the physical biology of flow, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  3. Bray D (2000) Cell movements. Garland Publishing, New York

    Google Scholar 

  4. Guasto JS, Rusconi R, Stocker R (2012) Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu Rev Fluid Mech 44:373–400

    Article  ADS  MathSciNet  Google Scholar 

  5. Lauga E, Powers T (2009) The hydrodynamics of swimming microorganisms. Rep Prog Phys 72:096601

    Article  ADS  MathSciNet  Google Scholar 

  6. Purcell EM (1977) Life at low Reynolds number. Am J Phys 45:3–11

    Article  ADS  Google Scholar 

  7. Ishimoto K, Yamada M (2012) A coordinate-based proof of the scallop theorem. SIAM J Appl Math 72(5):1686–1694

    Article  MATH  MathSciNet  Google Scholar 

  8. Tamm SL (1972) Ciliary motion in Paramecium: a scanning electron microscope study. J Cell Biol 55:250–255

    Article  Google Scholar 

  9. Solari CA, Ganguly S, Kessler JO, Michod RE, Goldstein RE (2006) Multicellularity and the functional interdependence of motility and molecular transport. Proc Natl Acad Sci USA 103(5):1353–1358

    Article  ADS  Google Scholar 

  10. Fauci LJ, Dillon R (2006) Biofluidmechanics of reproduction. Annu Rev Fluid Mech 38:371–394

    Article  ADS  MathSciNet  Google Scholar 

  11. Galajda P, Keymer J, Chaikin P, Austin R (2007) A wall of funnels concentrates swimming bacteria. J Bacteriol 189(23):8704–8707

    Article  Google Scholar 

  12. Di Leonardo R, Angelani L, DellArciprete D, Ruocco G, Iebba V, Schippa S, Conte MP, Mecarini F, De Angelis F, Di Fabrizio E (2010) Bacterial ratchet motors. Proc Natl Acad Sci USA 107(21):9541–9545

    Article  ADS  Google Scholar 

  13. Denissenko P, Kantsler V, Smith DJ, Kirkman-Brown J (2012) Human spermatozoa migration in microchannels reveals boundary-following navigation. Proc Natl Acad Sci USA 109(21):8007–8010

  14. Lauga E (2007) Propulsion in a viscoelastic fluid. Phys Fluids 19(8):083104

    Article  ADS  MathSciNet  Google Scholar 

  15. Fu HC, Powers TR, Wolgemuth HC (2007) Theory of swimming filaments in viscoelastic media. Phys Rev Lett 99:258101

    Article  ADS  Google Scholar 

  16. Shen XN, Arratia PE (May 2011) Undulatory swimming in viscoelastic fluids. Phys Rev Lett 106:208101

  17. Liu B, Powers TR, Breuer KS (2011) Force-free swimming of a model helical flagellum in viscoelastic fluids. Proc Natl Acad Sci USA 108(49):19516–19520

    Article  ADS  Google Scholar 

  18. Pratt LA, Kolter R (1998) Genetic analysis of escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 2:285–293

  19. Lemon KP, Higgins DE, Kolter R (2007) Flagellar motility is critical for listeria monocytogenes biofilm formation. J Bacteriol 189(12):4418–4424

    Article  Google Scholar 

  20. Houry A, Briandet R, Aymerich S, Gohar M (2010) Involvement of motility and flagella in bacillus cereus biofilm formation. Microbiology 156(4):1009–1018

    Article  Google Scholar 

  21. Berke AP, Turner L, Berg HC, Lauga E (2008) Hydrodynamic attraction of swimming microorganisms by surfaces. Phys Rev Lett 101:038102

    Article  ADS  Google Scholar 

  22. Ramaswamy S (2010) The mechanics and statistics of active matter. Annu Rev Condens Matter Phys 1:323–345

  23. Koch DL, Subramanian G (2011) Collective hydrodynamics of swimming microorganisms: living fluids. Annu Rev Fluid Mech 43:637–659

  24. Berg HC (1993) Random walks in biology. Princeton University Press, Princeton

    Google Scholar 

  25. Howse JR, Jones RAL, Ryan AJ, Gough T, Vafabakhsh R, Golestanian R (2007) Self-motile colloidal particles: from directed propulsion to random walk. Phys Rev Lett 99:048102

    Article  ADS  Google Scholar 

  26. Romanczuk P, Bär M, Ebeling W, Lindner B, Schimansky-Geier L (2012) Active brownian particles: from individual to collective stochastic dynamics. Eur Phys J Spec Top 202:1–162

    Article  Google Scholar 

  27. Ebbens SJ, Howse JR (2010) In pursuit of propulsion at the nanoscale. Soft Matter 6:726–738

    Article  ADS  Google Scholar 

  28. Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 12:55–85

  29. Taylor GI (1951) Analysis of the swimming of microscopic organisms. Proc R Soc Lond A 209(1099):447–461

    Article  ADS  MATH  Google Scholar 

  30. Reynolds AJ (1965) The swimming of minute organisms. J Fluid Mech 23:241–260

  31. Katz DF (1974) On the propulsion of micro-organisms near solid boundaries. J Fluid Mech 64:33–49

    Article  ADS  MATH  Google Scholar 

  32. Balmforth NJ, Coombs D, Pachmann S (2010) Microelastohydrodynamics of swimming organisms near solid boundaries in complex fluids. Q J Mech Appl Math 63(3):267–294

    Article  MATH  MathSciNet  Google Scholar 

  33. Gray J, Hancock GJ (1955) The propulsion of sea-urchin spermatozoa. J Exp Biol 32(4):802–814

    Google Scholar 

  34. Cox RG (1970) The motion of long slender bodies in a viscous fluids: I. general theory. J Fluid Mech 44:791–810

    Article  ADS  MATH  Google Scholar 

  35. Batchelor GK (1970) Slender body theory for particles of arbitrary cross section in stokes flow. J Fluid Mech 44:419–440

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Chwang AT, Wu TY (1971) A note on the helical movement of micro-organisms. Proc R Soc Lond B 178:327–346

    Article  ADS  Google Scholar 

  37. Keller JB, Rubinow SI (1976) Swimming of flagellated microorganisms. Biophys J 16:151–170

    Article  Google Scholar 

  38. Johnson RE (1980) An improved slender-body theory for stokes flow. J Fluid Mech 99:411–431

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Pedley TJ, Kessler JO (1992) Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu Rev Fluid Mech 24:313–358

    Article  ADS  MathSciNet  Google Scholar 

  40. Lighthill MJ (1952) On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun Pure Appl Math 109:109–118

  41. Blake JR (1971) A spherical envelop approach to ciliary propulsion. J Fluid Mech 46:199–208

    Article  ADS  MATH  Google Scholar 

  42. Ishikawa T, Simmonds MP, Pedley TJ (2006) Hydrodynamic interaction of two swimming model micro-organisms. J Fluid Mech 568:119–160

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Drescher K, Leptos KC, Tuval I, Ishikawa T, Pedley TJ, Goldstein RE (Apr 2009) Dancing Volvox: hydrodynamic bound states of swimming algae. Phys Rev Lett 102:168101

  44. Ishikawa T, Simmonds MP, Pedley TJ (2007) The rheology of a semi-dilute suspension of swimming model micro-organisms. J Fluid Mech 588:399–435

    ADS  MATH  MathSciNet  Google Scholar 

  45. Ishikawa T, Pedley TJ (2007) Diffusion of swimming model micro-organisms in a semi-dilute suspension. J Fluid Mech 588:437–462

    ADS  MATH  MathSciNet  Google Scholar 

  46. Magar V, Goto T, Pedley TJ (2003) Nutrient uptake by a self-propelled steady squirmer. Q J Mech. Appl Math 56:65–91

    Article  MATH  MathSciNet  Google Scholar 

  47. Magar V, Pedley TJ (2005) Average nutrient uptake by a self-propelled unsteady squirmer. J Fluid Mech 539:93–112

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Michelin S, Lauga E (2011) Optimal feeding is optimal swimming for all Péclet numbers. Phys Fluids 23(10):101901

  49. Michelin S, Lauga E (2010) Efficiency optimization and symmetry-breaking in a model of ciliary locomotion. Phys Fluids 22(11):111901

    Article  ADS  Google Scholar 

  50. Zhu L, Do-Quang M, Lauga E, Brandt L (2011) Locomotion by tangential deformation in a polymeric fluid. Phys Rev E 83:011901

  51. Zhu L, Lauga E, Brandt L (2012) Self-propulsion in viscoelastic fluids: Pushers vs. pullers. Phys Fluids 24(5):051902

    Article  ADS  Google Scholar 

  52. Wang S, Ardekani A (2012) Inertial squirmer. Phys Fluids 24(10):101902

    Article  ADS  Google Scholar 

  53. Stone HA, Samuel ADT (1996) Propulsion of microorganisms by surface distortions. Phys Rev Lett 77:4102–4104

    Article  ADS  Google Scholar 

  54. Drescher K, Goldstein RE, Tuval I (2010) Fidelity of adaptive phototaxis. Proc Natl Acad Sci USA 107(25):11171–11176

    Article  ADS  Google Scholar 

  55. Lamb H (1932) Hydrodynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  56. Brenner H (1964) The Stokes resistance of a slightly deformed sphere. Chem Eng Sci 19:519–539

  57. Happel J, Brenner H (1973) Low Reynolds number hydrodynamics: with special applications to particulate media. Noordhoff International Publishing, Leyden

    Google Scholar 

  58. Kim S, Karilla JS (1991) Microhydrodynamics: principles and selected applications. Dover, New York

    Google Scholar 

  59. Abramowitz M, Stegun IA (1965) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover, New York

    Google Scholar 

  60. Jeffrey A, Zwillinger D (2007) Table of integrals, series, and products. Academic Press, California

    MATH  Google Scholar 

  61. Drescher K, Goldstein RE, Michel N, Nicolas M, Tuval I (2010) Fidelity of adaptive phototaxis. Phys Rev Lett 105:168101

    Article  ADS  Google Scholar 

  62. Batchelor GK (1970) The stress system in a suspension of force-free particles. J Fluid Mech 41:545–570

    Article  ADS  MATH  MathSciNet  Google Scholar 

  63. Lighthill J (1975) Mathematical biofluiddynamics. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  64. Childress S (1981) Mechanics of swimming and flying. Cambridge University Press, New York

  65. Kim MJ, Breuer KS (2004) Enhanced diffusion due to motile bacteria. Phys Fluids 16(9):L78–L81

    Article  ADS  Google Scholar 

  66. Turner L, Ryu WS, Berg HC (2000) Real-time imaging of fluorescent flagellar filaments. J Bacteriol 182:2793–2801

    Article  Google Scholar 

  67. Spagnolie SE, Lauga E (2012) Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J Fluid Mech 700:105–147

Download references

Acknowledgments

Funding from the US National Science Foundation (Grant CBET-0746285 to E.L.) and the Croucher Foundation (through a fellowship to O.S.P.) is gratefully acknowledged. The authors also wish to thank the Department of Mechanical and Aerospace Engineering at the University of California, San Diego where this work was initiated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Lauga.

Appendices

Appendix A: Fundamental flow singularities in spherical coordinates

1.1 Stokeslets

The solution to Stokes equations due to a point force \(f \varvec{\alpha } \delta ({\mathbf {r}})\) of magnitude \(f\), and the direction \(\varvec{\alpha }\) at the origin is given by \({\mathbf {u}}= f {\mathbf {G}}(\varvec{\alpha })/ (8\pi \eta )\), where the vectorial representation of a Stokeslet is given by Eq. (36) in the main text.

Note that \(\varvec{\alpha }\) denotes the direction of the Stokeslet. Stokeslets in different Cartesian directions are expressed in spherical coordinates as

$$\begin{aligned} {\mathbf {G}}({\mathbf {e}}_x)&= \frac{1}{r} \left[ 2 \sin \theta \cos \phi \ {\mathbf {e}}_r + \cos \theta \cos \phi \ {\mathbf {e}}_\theta -\sin \phi \ {\mathbf {e}}_\phi \right] , \end{aligned}$$
(94)
$$\begin{aligned} {\mathbf {G}}({\mathbf {e}}_y)&= \frac{1}{r} \left[ 2 \sin \theta \sin \phi \ {\mathbf {e}}_r + \cos \theta \sin \phi \ {\mathbf {e}}_\theta + \cos \phi \ {\mathbf {e}}_\phi \right] ,\end{aligned}$$
(95)
$$\begin{aligned} {\mathbf {G}}({\mathbf {e}}_z)&= \frac{1}{r} \left[ 2 \cos \theta \ {\mathbf {e}}_r - \sin \theta \ {\mathbf {e}}_\theta \right] . \end{aligned}$$
(96)

1.2 A general Stokes dipole

A general force dipole is obtained by taking the derivative of a Stokeslet along the direction of interest. The vectorial representation of a force dipole is given by Eq. (44) in the main text, where \(\varvec{\alpha }\) and \(\varvec{\beta }\) denote respectively the direction of the Stokeslet and the direction along which the derivative is taken. The expressions of Stokes dipoles of different configurations in spherical coordinates are given by

$$\begin{aligned} {\mathbf {G}}_\mathrm{D}({\mathbf {e}}_x, {\mathbf {e}}_x)&= \frac{1}{r^2} \left[ -\frac{1}{4}(1+3 \cos 2\theta ) + \frac{3}{4} (1-\cos 2\theta ) \cos 2\phi \right] {\mathbf {e}}_r, \end{aligned}$$
(97)
$$\begin{aligned} {\mathbf {G}}_\mathrm{D}({\mathbf {e}}_y, {\mathbf {e}}_y)&= \frac{1}{r^2} \left[ -\frac{1}{4} (1+3 \cos 2\theta ) -\frac{3}{4} (1-\cos 2\theta ) \cos 2\phi \right] {\mathbf {e}}_r, \end{aligned}$$
(98)
$$\begin{aligned} {\mathbf {G}}_\mathrm{D}({\mathbf {e}}_z, {\mathbf {e}}_z)&= \frac{1}{2r^2} (1+3 \cos 2\theta ) {\mathbf {e}}_r, \end{aligned}$$
(99)
$$\begin{aligned} {\mathbf {G}}_\mathrm{D}({\mathbf {e}}_y, {\mathbf {e}}_x)&= \frac{1}{r^2} \left[ \frac{3}{4} (1-\cos 2\theta ) \sin 2\phi \ {\mathbf {e}}_r - \sin \theta \ {\mathbf {e}}_\phi \right] ,\end{aligned}$$
(100)
$$\begin{aligned} {\mathbf {G}}_\mathrm{D}({\mathbf {e}}_z, {\mathbf {e}}_x)&= \frac{1}{r^2} \left( \frac{3}{2} \sin 2\theta \cos \phi \ {\mathbf {e}}_r + \cos \phi \ {\mathbf {e}}_\theta - \cos \theta \sin \phi \ {\mathbf {e}}_\phi \right) , \end{aligned}$$
(101)
$$\begin{aligned} {\mathbf {G}}_\mathrm{D}({\mathbf {e}}_x, {\mathbf {e}}_y)&= \frac{1}{r^2} \left[ \frac{3}{4} (1-\cos 2\theta ) \sin 2\phi \ {\mathbf {e}}_r + \sin \theta \ {\mathbf {e}}_\phi \right] ,\end{aligned}$$
(102)
$$\begin{aligned} {\mathbf {G}}_\mathrm{D}({\mathbf {e}}_z, {\mathbf {e}}_y)&= \frac{1}{r^2} \left( \frac{3}{2} \sin 2\theta \sin \phi \ {\mathbf {e}}_r + \sin \phi \ {\mathbf {e}}_\theta + \cos \theta \cos \phi \ {\mathbf {e}}_\phi \right) ,\end{aligned}$$
(103)
$$\begin{aligned} {\mathbf {G}}_\mathrm{D}({\mathbf {e}}_x, {\mathbf {e}}_z)&= \frac{1}{r^2}\left( \frac{3}{2} \sin 2\theta \cos \phi \ {\mathbf {e}}_r -\cos \phi \ {\mathbf {e}}_\theta + \cos \theta \sin \phi \ {\mathbf {e}}_\phi \right) ,\end{aligned}$$
(104)
$$\begin{aligned} {\mathbf {G}}_\mathrm{D}({\mathbf {e}}_y, {\mathbf {e}}_z)&= \frac{1}{r^2} \left( \frac{3}{2} \sin 2\theta \sin \phi \ {\mathbf {e}}_r - \sin \phi \ {\mathbf {e}}_\theta - \cos \theta \cos \phi \ {\mathbf {e}}_\phi \right) . \end{aligned}$$
(105)

1.3 Stresslets

The vectorial representation of a stresslet is given by Eq. (45) in the main text, where \(\varvec{\alpha }\) and \(\varvec{\beta }\) denote respectively the direction of the Stokeslet and the direction along which the derivative is taken. The expressions of stresslets of different configurations in spherical coordinates are given by

$$\begin{aligned} {\mathbf {S}}({\mathbf {e}}_x, {\mathbf {e}}_x)&= {\mathbf {G}}_\mathrm{D}({\mathbf {e}}_x, {\mathbf {e}}_x) = \frac{1}{r^2} \left[ -\frac{1}{4}(1+3 \cos 2\theta ) + \frac{3}{4} (1-\cos 2\theta ) \cos 2\phi \right] {\mathbf {e}}_r, \end{aligned}$$
(106)
$$\begin{aligned} {\mathbf {S}}({\mathbf {e}}_y, {\mathbf {e}}_y)&= {\mathbf {G}}_\mathrm{D}({\mathbf {e}}_y, {\mathbf {e}}_y) = \frac{1}{r^2} \left[ -\frac{1}{4} (1+3 \cos 2\theta ) -\frac{3}{4} (1-\cos 2\theta ) \cos 2\phi \right] {\mathbf {e}}_r, \end{aligned}$$
(107)
$$\begin{aligned} {\mathbf {S}}({\mathbf {e}}_z, {\mathbf {e}}_z)&= {\mathbf {G}}_\mathrm{D}({\mathbf {e}}_z,{\mathbf {e}}_z) = \frac{1}{2r^2} (1+3 \cos 2\theta ) {\mathbf {e}}_r, \end{aligned}$$
(108)
$$\begin{aligned} {\mathbf {S}}({\mathbf {e}}_y, {\mathbf {e}}_x)&= {\mathbf {S}}({\mathbf {e}}_x, {\mathbf {e}}_y)= \frac{3}{4r^2} (1-\cos 2\theta ) \sin 2\phi \ {\mathbf {e}}_r ,\end{aligned}$$
(109)
$$\begin{aligned} {\mathbf {S}}({\mathbf {e}}_z, {\mathbf {e}}_x)&= {\mathbf {S}}({\mathbf {e}}_x, {\mathbf {e}}_z)= \frac{3}{2r^2} \sin 2\theta \cos \phi \ {\mathbf {e}}_r , \end{aligned}$$
(110)
$$\begin{aligned} {\mathbf {S}}({\mathbf {e}}_z, {\mathbf {e}}_y)&= {\mathbf {S}}({\mathbf {e}}_y, {\mathbf {e}}_z) = \frac{3}{2r^2} \sin 2\theta \sin \phi \ {\mathbf {e}}_r . \end{aligned}$$
(111)

1.4 Rotlets

The vectorial representation of a rotlet is given by Eq. (46) in the main text, where \(\varvec{\zeta } = \varvec{\beta } \times \varvec{\alpha }\) denotes the direction of the rotlet. The expressions of rotlets in different directions in spherical coordinates are given by

$$\begin{aligned} {\mathbf {R}}({\mathbf {e}}_x)&= \frac{1}{r^2}\left( - \sin \phi \ {\mathbf {e}}_\theta -\cos \theta \cos \phi \ {\mathbf {e}}_\phi \right) , \end{aligned}$$
(112)
$$\begin{aligned} {\mathbf {R}}({\mathbf {e}}_y)&= \frac{ 1}{r^2} \left( \cos \phi \ {\mathbf {e}}_\theta -\cos \theta \sin \phi \ {\mathbf {e}}_\phi \right) ,\end{aligned}$$
(113)
$$\begin{aligned} {\mathbf {R}}({\mathbf {e}}_z)&= \frac{1}{r^2} \left( \sin \theta \ {\mathbf {e}}_\phi \right) . \end{aligned}$$
(114)

1.5 A general Stokes quadrupole

A higher-order singularity, the force quadrupole, is obtained by taking the derivative of a force dipole along different directions and is given by Eq. (50) in the main text, where \(\varvec{\beta }, \varvec{\gamma }\) are the directions along which each derivative is taken. The expressions of Stokes quadrupoles of different configurations in spherical coordinates are given by

$$\begin{aligned}&{\mathbf {G}}({\mathbf {e}}_x,{\mathbf {e}}_x,{\mathbf {e}}_x) = \frac{1}{4r^3} \left[ - (5 \sin \theta +9\sin 3\theta )\cos \phi + 3 (3\sin \theta -\sin 3\theta )\cos 3\phi \right] {\mathbf {e}}_r \nonumber \\&\qquad \qquad \qquad \qquad \, + \frac{1}{16r^3} \left[ (7 \cos \theta +9\cos 3\theta )\cos \phi -3 (\cos \theta -\cos 3\theta ) \cos 3\phi \right] {\mathbf {e}}_\theta \nonumber \\&\qquad \qquad \qquad \qquad \, + \frac{1}{8r^3} \left[ -(5+3\cos 2\theta )\sin \phi + 3(1-\cos 2\theta )\sin 3\phi \right] {\mathbf {e}}_\phi ,\end{aligned}$$
(115)
$$\begin{aligned}&{\mathbf {G}}({\mathbf {e}}_y,{\mathbf {e}}_x,{\mathbf {e}}_x)={\mathbf {G}}({\mathbf {e}}_x,{\mathbf {e}}_y,{\mathbf {e}}_x) \nonumber \\&\qquad \qquad \qquad \quad = \ \frac{1}{4r^3} \left[ (\sin \theta -3\sin 3\theta )\sin \phi +3(3\sin \theta -\sin 3\theta ) \sin 3\phi \right] {\mathbf {e}}_r \nonumber \\&\quad \quad \qquad \qquad \qquad \, + \frac{1}{16r^3} \left[ (13 \cos \theta +3\cos 3\theta )\sin \phi + 3(\cos 3\theta -\cos \theta )\sin 3\phi \right] {\mathbf {e}}_\theta \nonumber \\&\qquad \qquad \qquad \quad \quad \, + \frac{1}{8r^3} \left[ (9\cos 2\theta -1)\cos \phi -3(1-\cos 2\theta ) \cos 3\phi \right] {\mathbf {e}}_\phi ,\end{aligned}$$
(116)
$$\begin{aligned}&{\mathbf {G}}({\mathbf {e}}_z, {\mathbf {e}}_x,{\mathbf {e}}_x) ={\mathbf {G}}({\mathbf {e}}_x, {\mathbf {e}}_z,{\mathbf {e}}_x) \nonumber \\&\quad \qquad \qquad \qquad = \ \frac{1}{2r^3} \left[ - (\cos \theta +3\cos 3\theta )+3 (\cos \theta -\cos 3\theta )\cos 2\phi \right] {\mathbf {e}}_r \nonumber \\&\quad \quad \qquad \qquad \qquad \, + \frac{1}{8r^3} \left[ (\sin \theta -3\sin 3\theta )+3 (3\sin \theta -\sin 3\theta )\cos 2\phi \right] {\mathbf {e}}_\theta ,\end{aligned}$$
(117)
$$\begin{aligned}&{\mathbf {G}}({\mathbf {e}}_y,{\mathbf {e}}_y,{\mathbf {e}}_x) = \ \frac{1}{4r^3} \left[ - (7 \sin \theta +3\sin 3\theta )\cos \phi -3 (3\sin \theta -\sin 3\theta )\cos 3\phi \right] {\mathbf {e}}_r \nonumber \\&\qquad \qquad \qquad \qquad \quad + \frac{1}{16r^3} \left[ (3\cos 3\theta -19\cos \theta )\cos \phi + 3(\cos \theta -\cos 3\theta )\cos 3\phi \right] {\mathbf {e}}_\theta \nonumber \\&\qquad \qquad \qquad \qquad \quad + \frac{1}{8r^3} \left[ (15\cos 2\theta -7)\sin \phi -3(1-\cos 2\theta ) \sin 3\phi \right] {\mathbf {e}}_\phi ,\end{aligned}$$
(118)
$$\begin{aligned}&{\mathbf {G}}({\mathbf {e}}_z,{\mathbf {e}}_y,{\mathbf {e}}_x) = \ {\mathbf {G}}({\mathbf {e}}_y,{\mathbf {e}}_z,{\mathbf {e}}_x) \nonumber \\&\qquad \qquad \qquad \quad = \ \frac{1}{r^3} \left[ \frac{3}{2}(\cos \theta -\cos 3\theta )\sin 2\phi \ {\mathbf {e}}_r + \frac{3}{8} (3\sin \theta -\sin 3\theta )\sin 2\phi \ {\mathbf {e}}_\theta -\frac{3}{2}\sin 2\theta \ {\mathbf {e}}_\phi \right] ,\end{aligned}$$
(119)
$$\begin{aligned}&{\mathbf {G}}({\mathbf {e}}_z,{\mathbf {e}}_z,{\mathbf {e}}_x) = \ \frac{1}{r^3} \left[ (3\sin 3\theta -\sin \theta ) \cos \phi \ {\mathbf {e}}_r + \frac{1}{4} (11\cos \theta -3\cos 3\theta )\cos \phi \ {\mathbf {e}}_\theta \right. \nonumber \\&\qquad \qquad \qquad \qquad \qquad \quad -\left. \frac{1}{2}(1+3\cos 2\theta )\sin \phi \ {\mathbf {e}}_\phi \right] ,\end{aligned}$$
(120)
$$\begin{aligned}&{\mathbf {G}}({\mathbf {e}}_x,{\mathbf {e}}_x,{\mathbf {e}}_y) = \frac{1}{4r^3} \left[ -(7 \sin \theta + 3\sin 3\theta ) \sin \phi +3 (3\sin \theta -\sin 3\theta ) \sin 3\phi \right] {\mathbf {e}}_r \nonumber \\&\qquad \qquad \qquad \qquad \, + \frac{1}{16r^3} \left[ \cos \theta (-19+3\cos 2\theta )\sin \phi -3(\cos \theta -\cos 3\theta )\sin 3\phi \right] {\mathbf {e}}_\theta \nonumber \\&\qquad \qquad \qquad \qquad \, + \frac{1}{8r^3} \left[ (7-15 \cos 2\theta )\cos \phi - 3(1-\cos 2\theta )\cos 3\phi \right] {\mathbf {e}}_\phi ,\end{aligned}$$
(121)
$$\begin{aligned}&{\mathbf {G}}({\mathbf {e}}_y, {\mathbf {e}}_x, {\mathbf {e}}_y) ={\mathbf {G}}({\mathbf {e}}_x, {\mathbf {e}}_y, {\mathbf {e}}_y) \nonumber \\&\qquad \qquad \qquad \quad = \ \frac{1}{4r^3} \left[ (\sin \theta -3\sin 3\theta ) \cos \phi - 3(3\sin \theta -\sin 3\theta ) \cos 3\phi \right] {\mathbf {e}}_r \nonumber \\&\qquad \qquad \qquad \qquad + \frac{1}{16r^3} \left[ (13 \cos \theta +3\cos 3\theta )\cos \phi +3(\cos \theta -\cos 3\theta )\cos 3\phi \right] {\mathbf {e}}_\theta \nonumber \\&\qquad \qquad \qquad \qquad + \frac{1}{8r^3} \left[ (1-9\cos 2\theta )\sin \phi -3(1-\cos 2\theta ) \sin 3\phi \right] {\mathbf {e}}_\phi , \end{aligned}$$
(122)
$$\begin{aligned}&{\mathbf {G}}({\mathbf {e}}_z,{\mathbf {e}}_x,{\mathbf {e}}_y) = {\mathbf {G}}({\mathbf {e}}_x,{\mathbf {e}}_z,{\mathbf {e}}_y) \nonumber \\&\qquad \qquad \qquad \quad = \frac{1}{r^3} \left[ \frac{3}{2} (\cos \theta -\cos 3\theta )\sin 2\phi \ {\mathbf {e}}_r + \frac{3}{8}(3\sin \theta -\sin 3\theta )\sin 2\phi \ {\mathbf {e}}_\theta + \frac{3}{2}\sin 2\theta \ {\mathbf {e}}_\phi \right] ,\end{aligned}$$
(123)
$$\begin{aligned}&{\mathbf {G}}({\mathbf {e}}_y,{\mathbf {e}}_y,{\mathbf {e}}_y) = \ \frac{1}{4r^3} \left[ -(5\sin \theta +9\sin 3\theta )\sin \phi -3(3\sin \theta -\sin 3\theta )\sin 3\phi \right] {\mathbf {e}}_r \nonumber \\&\qquad \qquad \qquad \qquad \, + \frac{1}{16r^3} \left[ (7\cos \theta +9\cos 3\theta ) \sin \phi +3(\cos \theta -\cos 3\theta )\sin 3\phi \right] {\mathbf {e}}_\theta \nonumber \\&\qquad \qquad \qquad \qquad \,+ \frac{1}{8r^3} \left[ (5+3\cos 2\theta )\cos \phi + 3 (1-\cos 2\theta ) \cos 3\phi \right] {\mathbf {e}}_\phi ,\end{aligned}$$
(124)
$$\begin{aligned}&{\mathbf {G}}({\mathbf {e}}_z, {\mathbf {e}}_y, {\mathbf {e}}_y)= {\mathbf {G}}({\mathbf {e}}_y, {\mathbf {e}}_z, {\mathbf {e}}_y) \nonumber \\&\qquad \qquad \qquad \quad = \ \frac{1}{2r^3} \left[ - (\cos \theta +3\cos 3\theta )- 3(\cos \theta -\cos 3\theta ) \cos 2\phi \right] {\mathbf {e}}_r \nonumber \\&\qquad \qquad \qquad \qquad \, + \frac{1}{8r^3} \left[ (\sin \theta -3\sin 3\theta )-3 (3\sin \theta -\sin 3 \theta )\cos 2\phi \right] {\mathbf {e}}_\theta ,\end{aligned}$$
(125)
$$\begin{aligned}&{\mathbf {G}}({\mathbf {e}}_z,{\mathbf {e}}_z,{\mathbf {e}}_y) = \frac{1}{r^3} \left[ (3\sin \theta -\sin \theta )\sin \phi \ {\mathbf {e}}_r+ \frac{1}{4}(11\cos \theta -3\cos 3\theta )\sin \phi \ {\mathbf {e}}_\theta \right. \nonumber \\&\qquad \qquad \qquad \qquad \qquad \quad +\left. \frac{1}{2}(1+3\cos 2\theta )\cos \phi \ {\mathbf {e}}_\phi \right] ,\end{aligned}$$
(126)
$$\begin{aligned}&{\mathbf {G}}({\mathbf {e}}_x,{\mathbf {e}}_x,{\mathbf {e}}_z) = \frac{1}{2r^3}\left[ -(5 \cos \theta +3 \cos 3\theta )+ 3(\cos \theta -\cos 3\theta )\cos 2\phi \right] {\mathbf {e}}_r \nonumber \\&\qquad \qquad \qquad \qquad \, - \frac{1}{8r^3} \left[ (7\sin \theta +3\sin 3\theta )+ 3(5\sin \theta +\sin 3\theta )\cos 2\phi \right] {\mathbf {e}}_\theta + \frac{3}{2r^3} \sin 2\theta \sin 2\phi \ {\mathbf {e}}_\phi ,\end{aligned}$$
(127)
$$\begin{aligned}&{\mathbf {G}}({\mathbf {e}}_y, {\mathbf {e}}_x, {\mathbf {e}}_z)= {\mathbf {G}}({\mathbf {e}}_x,{\mathbf {e}}_y,{\mathbf {e}}_z) \nonumber \\&\qquad \qquad \qquad \quad = \frac{1}{r^3} \left[ \frac{3}{2}(\cos \theta -\cos 3\theta )\sin 2\phi \ {\mathbf {e}}_r - \frac{3}{8} (5\sin \theta +\sin 3\theta ) \sin 2\phi \ {\mathbf {e}}_\theta - \frac{3}{2} \sin 2\theta \cos 2\phi \ {\mathbf {e}}_\phi \right] , \end{aligned}$$
(128)
$$\begin{aligned}&{\mathbf {G}}({\mathbf {e}}_z,{\mathbf {e}}_x,{\mathbf {e}}_z) = {\mathbf {G}}({\mathbf {e}}_x,{\mathbf {e}}_z,{\mathbf {e}}_z) \nonumber \\&\qquad \qquad \qquad \quad = \frac{1}{r^3} \left[ (\sin \theta +3\sin 3\theta )\cos \phi \ {\mathbf {e}}_r- \frac{1}{4}(5\cos \theta +3\cos 3\theta )\cos \phi \ {\mathbf {e}}_\theta + \frac{1}{2}(1+3\cos 2\theta ) \ {\mathbf {e}}_\phi \right] ,\end{aligned}$$
(129)
$$\begin{aligned}&{\mathbf {G}}({\mathbf {e}}_y,{\mathbf {e}}_y,{\mathbf {e}}_z) = \ \frac{1}{2r^3} \left[ -(5\cos \theta +3\cos 3\theta ) - 3(\cos \theta -\cos 3\theta ) \cos 2\phi \right] {\mathbf {e}}_r \nonumber \\&\qquad \qquad \qquad \qquad \, + \frac{1}{8r^3} \left[ -(7\sin \theta +3\sin 3\theta ) + 3(5\sin \theta +\sin 3\theta )\cos 2\phi \right] {\mathbf {e}}_\theta - \frac{3}{2r^3} \sin 2\theta \sin 2\phi \ {\mathbf {e}}_\phi ,\end{aligned}$$
(130)
$$\begin{aligned}&{\mathbf {G}}({\mathbf {e}}_z, {\mathbf {e}}_y, {\mathbf {e}}_z) ={\mathbf {G}}({\mathbf {e}}_y, {\mathbf {e}}_z, {\mathbf {e}}_z) \nonumber \\&\qquad \qquad \qquad \quad = \!\frac{1}{r^3} \left[ (\sin \theta +3\sin 3\theta )\sin \phi \ {\mathbf {e}}_r \!-\! \frac{1}{4} (5\cos \theta \!+\!3\cos 3\theta )\!\sin \phi \!\ {\mathbf {e}}_\theta \!-\! \frac{1}{2} (1+3\cos 2\theta ) \!\cos \phi \ {\mathbf {e}}_\phi \right] \!,\quad \end{aligned}$$
(131)
$$\begin{aligned}&{\mathbf {G}}({\mathbf {e}}_z,{\mathbf {e}}_z,{\mathbf {e}}_z) = \frac{1}{r^3} \left[ (\cos \theta \!+\!3\cos 3\theta ) \ {\mathbf {e}}_r + \frac{1}{4}(3\sin 3\theta -\sin \theta ) \ {\mathbf {e}}_\theta \right] . \end{aligned}$$
(132)

1.6 Potential dipoles

The vectorial representation of a potential (source) dipole is given by Eq. (52) in the main text, where \(\varvec{\alpha }\) denotes the direction of the dipole. The expressions of potential dipoles in different directions in spherical coordinates are given by

$$\begin{aligned} {\mathbf {P}}_\mathrm{D}({\mathbf {e}}_x)&= \frac{1}{r^3} \left[ 2 \sin \theta \cos \phi \ {\mathbf {e}}_r -\cos \theta \cos \phi \ {\mathbf {e}}_\theta + \sin \phi \ {\mathbf {e}}_\phi \right] , \end{aligned}$$
(133)
$$\begin{aligned} {\mathbf {P}}_\mathrm{D}({\mathbf {e}}_y)&= \frac{1}{r^3} \left[ 2 \sin \theta \sin \phi \ {\mathbf {e}}_r - \cos \theta \sin \phi \ {\mathbf {e}}_\theta - \cos \phi \ {\mathbf {e}}_\phi \right] ,\end{aligned}$$
(134)
$$\begin{aligned} {\mathbf {P}}_\mathrm{D}({\mathbf {e}}_z)&= \frac{1}{r^3} \left[ 2 \cos \theta \ {\mathbf {e}}_r + \sin \theta \ {\mathbf {e}}_\theta \right] . \end{aligned}$$
(135)

1.7 Rotlet dipoles

One can take a derivative of a rotlet to obtain a rotlet dipole, which is given by Eq. (56) in the main text, where \(\varvec{\zeta }\) and \(\varvec{\gamma }\) denote respectively the direction of the rotlet and the direction along which the derivative is taken. The expressions of rotlet dipoles of different configurations in spherical coordinates are given by

$$\begin{aligned}&{\mathbf {R}}_D({\mathbf {e}}_x, {\mathbf {e}}_x) = \frac{1}{r^3} \left[ -\frac{3}{2} \sin \theta \sin 2 \phi \ {\mathbf {e}}_\theta - \frac{3}{4} \sin 2\theta \left( 1+\cos 2\phi \right) {\mathbf {e}}_\phi \right] , \end{aligned}$$
(136)
$$\begin{aligned}&{\mathbf {R}}_\mathrm{D}({\mathbf {e}}_y,{\mathbf {e}}_y) = \frac{1}{r^3} \left[ \frac{3}{2} \sin \theta \sin 2 \phi \ {\mathbf {e}}_\theta - \frac{3}{4} \sin 2 \theta \left( 1- \cos 2\phi \right) {\mathbf {e}}_\phi \right] ,\end{aligned}$$
(137)
$$\begin{aligned}&{\mathbf {R}}_\mathrm{D}({\mathbf {e}}_z,{\mathbf {e}}_z) = \frac{3 \sin 2\theta }{2r^3}{\mathbf {e}}_\phi , \end{aligned}$$
(138)
$$\begin{aligned}&{\mathbf {R}}_\mathrm{D}({\mathbf {e}}_y,{\mathbf {e}}_x) = \frac{1}{r^3} \left[ -\cos \theta \ {\mathbf {e}}_r -\frac{1}{2}\sin \theta \left( 1-3 \cos 2\phi \right) \ {\mathbf {e}}_\theta - \frac{3}{4} \sin 2\theta \sin 2 \phi \ {\mathbf {e}}_\phi \right] ,\end{aligned}$$
(139)
$$\begin{aligned}&{\mathbf {R}}_\mathrm{D}({\mathbf {e}}_z,{\mathbf {e}}_x)= \frac{1}{r^3} \left[ \sin \theta \sin \phi \ {\mathbf {e}}_r - 2 \cos \theta \sin \phi \ {\mathbf {e}}_\theta - \frac{1}{2} \left( 1+3 \cos 2\theta \right) \cos \phi \ {\mathbf {e}}_\phi \right] ,\end{aligned}$$
(140)
$$\begin{aligned}&{\mathbf {R}}_\mathrm{D}({\mathbf {e}}_x,{\mathbf {e}}_y)= \frac{1}{r^3} \left[ \cos \theta \ {\mathbf {e}}_r + \frac{1}{2}\sin \theta \left( 1 +3 \cos 2\phi \right) \ {\mathbf {e}}_\theta - \frac{3}{4} \sin 2 \theta \sin 2 \phi \ {\mathbf {e}}_\phi \right] , \end{aligned}$$
(141)
$$\begin{aligned}&{\mathbf {R}}_\mathrm{D}({\mathbf {e}}_z,{\mathbf {e}}_y)= \frac{1}{r^3} \left[ -\sin \theta \cos \phi \ {\mathbf {e}}_r + 2 \cos \theta \cos \phi \ {\mathbf {e}}_\theta - \frac{1}{2}\left( 1+3 \cos 2\theta \right) \sin \phi \ {\mathbf {e}}_\phi \right] , \end{aligned}$$
(142)
$$\begin{aligned}&{\mathbf {R}}_\mathrm{D}({\mathbf {e}}_x,{\mathbf {e}}_z)=\frac{1}{r^3} \left[ -\sin \theta \sin \phi \ {\mathbf {e}}_r -\cos \theta \sin \phi \ {\mathbf {e}}_\theta + \frac{1}{2} \left( 1-3\cos 2\theta \right) \cos \phi \ {\mathbf {e}}_\phi \right] , \end{aligned}$$
(143)
$$\begin{aligned}&{\mathbf {R}}_\mathrm{D}({\mathbf {e}}_y,{\mathbf {e}}_z)= \frac{1}{r^3} \left[ \sin \theta \cos \phi \ {\mathbf {e}}_r + \cos \theta \cos \phi \ {\mathbf {e}}_\theta + \frac{1}{2}\left( 1-3\cos 2\theta \right) \sin \phi \ {\mathbf {e}}_\phi \right] . \end{aligned}$$
(144)

Appendix B: Swimming of a squirmer with radial deformation

In the main text, we considered squirmers with a purely tangential deformation. In this appendix, we complement these results by addressing the case of squirmers also undergoing radial deformation. The results here might also be useful for modeling jet-driven microscopic swimmers, for instance, the locomotion of bacteria expelling slime.

For the axisymmetric case without the restriction to purely tangential deformations, Eq. (19), the solution to the pumping problem reads

$$\begin{aligned} u_r&= \sum _{n=1}^\infty \frac{(n+1) P_n}{2 (2n-1) \eta r^{n+2}} \left[ A_{0n} r^2 - 2 B_{0n} (2n-1) \eta \right] ,\end{aligned}$$
(145)
$$\begin{aligned} u_\theta&= \sum _{n=1}^\infty \frac{\sin \theta P_n^{\prime }}{2 r^{n}} \left[ \frac{ n-2}{n(2n-1) \eta } A_{0n} - \frac{2}{r^2} B_{0n} \right] , \end{aligned}$$
(146)
$$\begin{aligned} u_\phi&= \sum _{n=1}^\infty \frac{\sin \theta P_n^{\prime }}{r^{n+1}} C_{0n}, \end{aligned}$$
(147)

with the surface velocities

$$\begin{aligned} u_r(r=a)&= \sum _{n=1}^\infty \left[ \frac{(n+1)A_{0n} }{2 (2n-1) \eta a^{n}} - \frac{B_{0n}}{a^{n+2}} \right] P_n,\end{aligned}$$
(148)
$$\begin{aligned} u_\theta (r=a)&= \sum _{n=1}^\infty \left[ \frac{ n-2}{2n(2n-1)a^n \eta } A_{0n} - \frac{1}{a^{n+2}} B_{0n} \right] \sin \theta P_n^{\prime } , \end{aligned}$$
(149)
$$\begin{aligned} u_\phi (r=a)&= \sum _{n=1}^\infty \frac{\sin \theta P_n^{\prime }}{a^{n+1}} C_{0n} . \end{aligned}$$
(150)

Without the azimuthal modes \(C_{0n}\), the preceding surface velocities reduce to the form in Lighthill [40] and Blake [41]. However, notice that the coefficients \(A_{0n}\) and \(B_{0n}\) do not correspond directly to the coefficients \(A_n\) and \(B_n\) used in Lighthill [40] and Blake [41], which represent directly the radial and polar modes, respectively. With Lamb’s general solution, the radial and polar modes are represented by a combination of the \(A_{0n}\) and \(B_{0n}\) modes. The relation between the two sets of coefficients is given by

$$\begin{aligned} A_{0n}&= \frac{a^n n (2n-1)\eta }{n+1} A_n - \frac{2a^n (2n-1)\eta }{n+1} B_n, \end{aligned}$$
(151)
$$\begin{aligned} B_{0n}&= \frac{a^{n+2}(n-2)}{2(n+1)}A_n - \frac{a^{n+2}}{n+1}B_n . \end{aligned}$$
(152)

The translational and rotational velocities are computed similarly to Sect. 3.1. Without the restriction to tangential deformation, Eq. (19), the propulsion velocity becomes

$$\begin{aligned} {\mathbf {U}}&= \frac{2}{3 \eta a} \nabla \left[ r \left( P_1 A_{01} \right) \right] = -\frac{2}{3a \eta } A_{01} {\mathbf {e}}_z, \end{aligned}$$
(153)

while the computation of the rotational velocity is unaffected (Eq. 32).

The flow field around an axisymmetric swimming squirmer is thus given by

$$\begin{aligned} v_r&= \left( \frac{a^2}{3 \eta }A_{01}-2B_{01} \right) \frac{\cos \theta }{r^3}+ \sum _{n=2}^\infty \frac{(n+1) P_n}{r^{n+2}} \left[ \frac{A_{0n} r^2}{2(2n-1) \eta } - B_{0n} \right] , \end{aligned}$$
(154)
$$\begin{aligned} v_\theta&= \left( \frac{a^2}{6\eta } A_{01}-B_{01}\right) \frac{\sin \theta }{r^3} + \sum _{n=2}^\infty \frac{\sin \theta P_n^{\prime }}{r^{n+2}} \left[ \frac{(n-2)r^2}{2n (2n-1) \eta } A_{0n} - B_{0n}\right] , \end{aligned}$$
(155)
$$\begin{aligned} v_\phi&= \sum _{n=2}^\infty \frac{\sin \theta P_n^{\prime }}{r^{n+1}} C_{0n} . \end{aligned}$$
(156)

The computation of the propulsion speed of a nonaxisymmetric squirmer with radial deformation follows the same procedures as in Sect. 4.1, but without the restriction to tangential deformation, Eq. (19). The propulsion speed is given by

$$\begin{aligned} {\mathbf {U}}&= \frac{2}{3 \eta a} \nabla \left[ r \left( P_1 A_{01}+ P_1^1 \cos \phi A_{11}+ P_1^1 \sin \phi \tilde{A}_{11} \right) \right] \nonumber \\&= \left. \frac{2}{3a \eta } \left( A_{11} {\mathbf {e}}_x + \tilde{A}_{11} {\mathbf {e}}_y - A_{01} {\mathbf {e}}_z \right) \right. , \end{aligned}$$
(157)

while the expression for the rotational speed remains the same, Eq. (61).

To obtain the overall swimming flow field, we follow the same procedures as in the axisymmetric case. Superimposing Lamb’s general solution in the pumping problem, Eqs. (16)–(17), with the flow fields due to the induced translation and rotation at the velocities determined earlier, we arrive at the flow field surrounding a general swimming squirmer without the assumption of purely tangential deformation:

$$\begin{aligned} v_r&= \frac{1}{r^3} \left[ \left( 2 B_{11} - \frac{a^2}{3 \eta }A_{11} \right) \sin \theta \cos \phi + \left( 2 \tilde{B}_{11}- \frac{a^2}{3 \eta } \tilde{A}_{11} \right) \sin \theta \sin \phi - \left( 2B_{01}- \frac{a^2}{3 \eta }A_{01} \right) \cos \theta \right] \nonumber \\&+ \sum _{n=2}^\infty \sum _{m=0}^n \frac{(n+1) P^m_n}{r^{n+2}} \left\{ \left[ \frac{A_{mn} r^2}{2(2n-1) \eta } - B_{mn} \right] \cos m\phi + \left[ \frac{\tilde{A}_{mn} r^2}{2(2n-1) \eta } - \tilde{B}_{mn} \right] \sin m\phi \right\} ,\end{aligned}$$
(158)
$$\begin{aligned} v_\theta&= -\frac{1}{r^3} \left[ \left( B_{11}- \frac{a^2}{6 \eta } A_{11}\right) \cos \theta \cos \phi + \left( \tilde{B}_{11}-\frac{a^2}{6\eta } \tilde{A}_{11} \right) \cos \theta \sin \phi + \left( B_{01}-\frac{a^2}{6\eta } A_{01}\right) \sin \theta \right] \nonumber \\&+ \sum _{n=2}^\infty \sum _{m=0}^n \frac{\sin \theta P_n^{m^{\prime }}}{r^{n+2}} \left\{ \left[ \frac{(n-2)r^2}{2n (2n-1) \eta } A_{mn} - B_{mn}\right] \cos m \phi + \left[ \frac{(n-2)r^2}{2n(2n-1) \eta } \tilde{A}_{mn} - \tilde{B}_{mn} \right] \sin m\phi \right\} \nonumber \\&+ \sum _{n=2}^\infty \sum _{m=0}^n \frac{mP^m_n}{r^{n+1}\sin \theta } \left( \tilde{C}_{mn} \cos m\phi - C_{mn} \sin m\phi \right) ,\end{aligned}$$
(159)
$$\begin{aligned} v_\phi&= \frac{1}{r^3} \left[ \left( B_{11}-\frac{a^2}{6 \eta }A_{11} \right) \sin \phi - \left( \tilde{B}_{11}-\frac{a^2}{6 \eta }\tilde{A}_{11} \right) \cos \phi \right] + \sum _{n=2}^\infty \sum _{m=0}^n \frac{\sin \theta P_n^{m^{\prime }}}{r^{n+1}} \left( C_{mn} \cos m\phi + \tilde{C}_{mn} \sin m\phi \right) \nonumber \\&- \sum _{n=2}^\infty \sum _{m=0}^n \frac{mP_n^m}{r^{n+2}\sin \theta } \left\{ \left[ \frac{(n-2)r^2}{2n(2n-1)\eta } \tilde{A}_{mn} - \tilde{B}_{mn} \right] \cos m\phi - \left[ \frac{(n-2)r^2}{2n(2n-1)\eta } A_{mn} - B_{mn} \right] \sin m\phi \right\} . \end{aligned}$$
(160)

Appendix C: Rate of work with radial deformation

We now compute the rate of work of a swimmer with a radial deformation. Lengthy calculations allow us to compute the integral from Eq. (76) as

$$\begin{aligned} \mathcal {P}&= \frac{48 \pi \eta }{a^5} \left( B_{01}^2 + B_{11}^2 + \tilde{B}_{11}^2 \right) + \frac{4 \pi }{3 a \eta } \left( A_{01}^2 + A_{11}^2 + \tilde{A}_{11}^2 \right) - \frac{16 \pi }{a^3} \left( A_{01}B_{01}+A_{11} B_{11}+\tilde{A}_{11} \tilde{B}_{11} \right) \nonumber \\&\!+ \sum _{n=2}^\infty \frac{4 \pi n (n\!+\!1)}{2n\!+\!1} \left[ \frac{2n^3 \!+\! n^2 \!-\!2n\!+\!2}{2n^2 (2n\!-\!1)^2 \eta a^{2n-1}} A_{0n}^2 \!-\! \frac{2(n+2)}{n a^{2n+1}} A_{0n}B_{0n} \!+\! \frac{(10n+4 \!+\!4n^2) \eta }{n a^{2n+3}} B_{0n}^2 \!+\! \frac{(n+2) \eta }{a^{2n+1}} C_{0n}^2 \right] \nonumber \\&+ \sum _{n=2}^\infty \sum _{m=1}^n \frac{2\pi n (n+1)(n+m)!}{(2n+1)(n-m)!} \left[ \frac{2n^3+n^2-2n+2}{2n^2 (2n-1)^2 \eta a^{2n-1}} (A_{mn}^2+ \tilde{A}_{mn}^2)- \frac{2(n+2)}{n} (A_{mn} B_{mn}+\tilde{A}_{mn} \tilde{B}_{mn}) \right. \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad +\frac{(10n +4+4n^2) \eta }{n a^{2n+3}} (B_{mn}^2+ \tilde{B}_{mn}^2)+ \left. \frac{(n+2) \eta }{a^{2n+1}} (C_{mn}^2 + \tilde{C}_{mn}^2) \right] . \end{aligned}$$
(161)

We have again employed Eq. (78) to obtain the preceding result. Despite the presence of cross-terms, it can be shown by algebraic manipulations that the rate of work is positive definite. Removing all the nonaxisymmetric modes and transforming the coefficients with Eqs. (151) and (152), the preceding expression agrees with the results in Blake [41]. For the case of purely tangential deformation, with Eq. (19), the preceding expression reduces to Eq. (77) in the main text.

Appendix D: Squirming with arbitrary surface velocities and radial deformation

Here we allow in the general squirming profile additional radial velocity components of the form \(D_{m} (\theta ), \tilde{D}_m (\theta )\),

$$\begin{aligned} \left. u_r\right| _{r=a}= \sum _{m=0}^\infty D_m (\theta ) \cos m\phi + \tilde{D}_m (\theta ) \sin m \phi , \end{aligned}$$
(162)
$$\begin{aligned} u_\theta \big |_{t=a} =\sum _{m=0}^\infty E_m (\theta ) \cos m \phi + \tilde{E}_m (\theta ) \sin m \phi , \end{aligned}$$
(163)
$$\begin{aligned} u_\phi \big |_{r=a}=\sum _{m=0}^\infty F_m (\theta ) \cos m \phi + \tilde{F}_m (\theta ) \sin m \phi , \end{aligned}$$
(164)

and follow the same matching conditions, Eqs. (83) and (84), in order to determine the coefficients \(A_{mn}\), \(\tilde{A}_{mn}\), \(B_{mn}\), \(\tilde{B}_{mn}\), \(C_{mn}\), and \(\tilde{C}_{mn}\) in Lamb’s general solution. The only difference is that we no longer have the purely tangential deformation condition (Eq. 19) and therefore are required to determine \(A_{mn}, \tilde{A}_{mn},B_{mn}, \tilde{B}_{mn}\) such that the radial (Eq. 83) and polar (Eq. 84) matching conditions are satisfied simultaneously. Using the orthogonality of the associated Legendre polynomials and simultaneously solving the equations, we obtain

$$\begin{aligned} A_{mn}&= \frac{(2n-1) a^n \eta }{2} \frac{(2n+1)(n-m)!}{(n+1)(n+m)!} \mathop \int \limits _{-1}^1 \left[ n D_m + \frac{\partial }{\partial \mu } \left( E_m \sin \theta \right) - \frac{m \tilde{F}_m}{\sin \theta } \right] P_n^m \mathrm{d}\mu ,\end{aligned}$$
(165)
$$\begin{aligned} \tilde{A}_{mn}&= \frac{(2n-1) a^n \eta }{2} \frac{(2n+1)(n-m)!}{(n+1)(n+m)!} \mathop \int \limits _{-1}^1 \left[ n \tilde{D}_m + \frac{\partial }{\partial \mu } \left( \tilde{E}_m \sin \theta \right) + \frac{m F_m}{\sin \theta } \right] P_n^m \mathrm{d}\mu , \end{aligned}$$
(166)
$$\begin{aligned} B_{mn}&= \frac{a^{n+2}}{4} \frac{(2n+1)(n-m)!}{(n+1)(n+m)!} \mathop \int \limits _{-1}^1 \left[ (n-2) D_m + \frac{\partial }{\partial \mu } \left( E_m \sin \theta \right) -\frac{m \tilde{F}_m}{\sin \theta } \right] P_n^m \mathrm{d}\mu , \end{aligned}$$
(167)
$$\begin{aligned} \tilde{B}_{mn}&= \frac{a^{n+2}}{4} \frac{(2n+1)(n-m)!}{(n+1)(n+m)!} \mathop \int \limits _{-1}^1 \left[ (n-2) \tilde{D}_m + \frac{\partial }{\partial \mu } \left( \tilde{E}_m \sin \theta \right) + \frac{m F_m}{\sin \theta } \right] P_n^m \mathrm{d}\mu ,\end{aligned}$$
(168)
$$\begin{aligned} C_{mn}&= \frac{a^{n+1}}{2n}\frac{(2n+1)(n-m)!}{(n+1)(n+m)!} \mathop \int \limits _{-1}^1 \left[ -\frac{\partial }{\partial \mu } \left( F_m \sin \theta \right) -\frac{m \tilde{E}_m}{\sin \theta } \right] P_n^m \mathrm{d}\mu , \end{aligned}$$
(169)
$$\begin{aligned} \tilde{C}_{mn}&= \frac{a^{n+1}}{2n}\frac{(2n+1)(n-m)!}{(n+1)(n+m)!} \mathop \int \limits _{-1}^1 \left[ -\frac{\partial }{\partial \mu } \left( \tilde{F}_m \sin \theta \right) +\frac{m E_m}{\sin \theta } \right] P_n^m \mathrm{d}\mu , \end{aligned}$$
(170)

for \(0\le m \le \infty \) and \(m \le n \ne 0\). When there is no radial deformation, i.e., \(D_m = \tilde{D}_m= 0\), we recover the results without radial deformation (Eqs. 9093 and 19).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pak, O.S., Lauga, E. Generalized squirming motion of a sphere. J Eng Math 88, 1–28 (2014). https://doi.org/10.1007/s10665-014-9690-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-014-9690-9

Keywords

Navigation