Skip to main content

Advertisement

Log in

An assessment of the risk of element contamination of urban and industrial areas using Taraxacum sect. Ruderalia as a bioindicator

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Central Bohemia (Czech Republic) has highly developed industry and a dense rail network. Here, we aimed to determine the content of risk elements in dandelion plants (Taraxacum sect. Ruderalia) growing near train stations, industrial enterprises, and in the city parks of 16 cities in the Central Bohemian region. The highest element contents in the soils were found in industrial areas affected by the historical mining and smelting activities; contemporary industry showed no substantial effect on the soil element contents. The median values of element contents (As, Be, Cd, Co, Cr, Cu, Ni, Pb, and Zn) at the railway station sites were the highest among the monitored sites, where the differences between park and station sites were significant for Be, Co, and Zn. Although the intensity of the traffic at the individual stations differed, we found that long-term regular traffic enhanced the element contents in the soils and, subsequently, in the plants. For Cd, Co, Cr, Cu, Pb, V, and Zn, the highest median element contents were found in plant roots, regardless of the sampling site. For Cd and Zn, the contents in leaves were higher than in the inflorescences, and the opposite pattern was recorded for Co and Cu. As and Be were distributed equally among the plant parts. Among the sampling sites, the As, Be, Cd, Zn, and Pb contents in the plant roots tended to have higher median values at the station sites, confirming the results of our soil analyses. We detected a fairly good correlation between soil and plant content for cadmium, regardless of the sampling site, soil element content, or analyzed part of the plant. Thus, we propose that dandelion is a suitable bioindicator of cadmium pollution of soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackova, D. G., Kadifkova-Panovska, T., Andonovska, K. B., & Stafilov, T. (2016). Evaluation of genotoxic variations in plant model systems in a case of metal stressors. Journal of Environmental Science and Health Part B-Pesticides, Food Contaminants and Agricultural Wastes, 51, 340–349.

    Article  CAS  Google Scholar 

  • Anonymous (2002). Directive No. 2002/32/ES of European Parliament and Council of Europe concerning xenobiotics in feedstuffs.

  • Anonymous (2006). Commission Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs.

  • Anonymous (2016). Public notice No. 153/2016 about the conditions for the protection of the agricultural soil quality. Legal code of The Czech Republic, pp. 2692–2699.

  • Bech, J., Roca, N., Tume, P., Ramos-Miras, J., Gi, C., & Boluda, R. (2016). Screening for new accumulator plants in potential hazards elements polluted soil surrounding Peruvian mine tailings. Catena, 136, 66–73.

    Article  CAS  Google Scholar 

  • Bednářová, Z., Kalina, J., Hájek, O., Sáňka, M., & Komprdová, K. (2016). Spatial distribution and risk assessment of metals in agricultural soils. Geoderma, 284, 113–121.

    Article  Google Scholar 

  • Bini, C., Wahsha, M., Fontana, S., & Maleci, L. (2012). Effects of heavy metals onmorphological characteristics of Taraxacum officinale Web growing on mine soils in NE Italy. Journal of Geochemical Exploration, 123, 101–108.

    Article  CAS  Google Scholar 

  • Borůvka, L., Huanwei, C., Kozák, J., & Krištoufková, S. (1996). Heavy contamination of soilwith cadmium, lead and zinc in the alluvium of the Litavka river. Rostlinná Výroba, 42, 543–550.

    Google Scholar 

  • Bretzel, F., Benvenuti, S., & Pistelli, L. (2014). Metal contamination in urban street sediment in Pisa (Italy) can affect the production of antioxidant metabolites in Taraxacum officinale Weber. Environmental Science and Pollution Research, 21, 2325–2333.

    Article  CAS  Google Scholar 

  • Carrero, J. A., Arrizabalaga, I., Bustamante, J., Goienaga, N., Arana, G., & Madariaga, J. M. (2013). Diagnosing the traffic impact on roadside soils through a multianalytical data analysisof the concentration profiles of traffic-related elements. Science of the Total Environment, 458-460, 427–434.

    Article  CAS  Google Scholar 

  • Çolak, M., Gümrükçüoğlu, M., Boysan, F., & Baysal, E. (2016). Determination and mapping ofcadmium accumulation in plant leaves on the highway roadside, Turkey. Archivesof Environmental Protection, 42, 11–16.

    Google Scholar 

  • Collier, M. H., Keane, B., & Rogstad, S. H. (2010). Productivity differences between dandelion (Taraxacum officinale; Asteraceae) clones from pollution impacted versus non-impacted soils. Plant and Soil, 329, 173–183.

    Article  CAS  Google Scholar 

  • Collier, M. H., Boughter, S. A., Dameron, M. P., Gribbins, K. M., Keane, B., Shann, J. R., & Rogstad, S. H. (2017). Uptake and distribution of copper, lead, and zinc in dandelions (Taraxacum officinale; Asteraceae) sampled from polluted and nonpolluted soils. Journal of the Torrey Botanical Society, 144, 47–57.

    Article  Google Scholar 

  • Čurlík, J., Kolesár, M., Durža, O., & Hiller, E. (2016). Dandelion (Taraxacum officinale) and agrimony (Agrimonia eupatoria) as indicators of geogenic contamination of flysch soils in Eastern Slovakia. Archives of Environmental Contamination and Toxicology, 70, 475–486.

    Article  Google Scholar 

  • Eskenazy, G. M. (2006). Geochemistry of beryllium in Bulgarian coals. International Journal of Coal Geology, 66, 305–315.

    Article  CAS  Google Scholar 

  • Ettler, V., Rohovec, J., Navrátil, T., & Mihaljevič, M. (2007). Mercury distribution in soil profiles polluted by lead smelting. Bulletin of Environmental Contamination and Toxicology, 78, 13–17.

    Article  CAS  Google Scholar 

  • França, F. C. S. S., Albuuerque, A. M. A., Almeida, A. C., Silveira, P. B., Filho, C. A., Hazin, C. A., & Honorato, E. V. (2017). Heavy metals deposited in the culture of lettuce (Lactuca sativa L.) by the influence of vehicular traffic in Pernambuco, Brasil. Food Chemistry, 215, 171–176.

    Article  Google Scholar 

  • Galušková, I., Borůvka, L., & Drábek, O. (2011). Urban soil contamination by potentially risk elements. Soil and Water Research, 6, 55–60.

    Article  Google Scholar 

  • Galušková, I., Mihaljevič, M., Borůvka, L., Drábek, O., Frühauf, M., & Nemček, K. (2014). Lead isotope composition and risk elements distribution in urban soils of historically different cities Ostrava and Prague, the Czech Republic. Journal of Geochemical Exploration, 147, 215–221.

    Article  Google Scholar 

  • Giacomino, A., Malandrino, M., Colombo, M. L., Miaglia, S., Maimone, P., Blancato, S., Conca, E., & Abollino, O. (2016). Metal content in dandelion (Taraxacum officinale) leaves:influence of vehicular traffic and safety upon consumption as food. Journal of Chemistry, 2016, 9842987.

    Article  Google Scholar 

  • Gjorgieva, D., Kadifkova-Panovska, T., Bačeva, K., & Stafilov, T. (2011). Assessment of heavy metal pollution in Republic of Macedonia using a plant assay. Archives of EnvironmentalContamination and Toxicology, 60, 233–240.

    Article  CAS  Google Scholar 

  • Hammami, H., Parsa, M., Mohassel, M. H. R., Rahimi, S., & Mijani, S. (2016). Weeds ability to phytoremediate cadmium-contaminated soil. International Journal of Phytoremediation, 18, 48–53.

    Article  Google Scholar 

  • Horák, J., & Hejcman, M. (2016). 800 years of mining and smelting in Kutná Hora region (the Czech Republic)—spatial and multivariate meta-analysis of contamination studies. Journal of Soils and Sediments, 16, 1584–1598.

    Article  Google Scholar 

  • ISO 11260.(1994). Standard of soil quality—determination of effective cation exchange capacity and base saturation level using barium chloride solution. International Organization for Standardization, Geneva.

  • Jeon, H. J., Kang, H. J., Jung, H. J., Kang, Y. S., Lim, C. J., Kim, Y. M., & Park, E. H. (2008). Anti-inflammatory activity of Taraxacum officinale. Journal of Ethnopharmacology, 115, 82–88.

    Article  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Kašparová, M., Száková, J., Sysalová, J., Tlustoš, P.(2011). Vliv dopravy na obsahvybraných rizikových prvků v půdě a vegetaci v blízkosti dálnice D1. (in Czech) Ochrana ovzduší 3,12–23.

  • Keane, B., Collier, M., Shann, J. R., & Rogstad, S. H. (2001). Metal content of dandelion (Taraxacum officinale) leaves in relation to soil contamination and airborne particulate matter. The Science of the Total Environment, 281, 63–78.

    Article  CAS  Google Scholar 

  • Keane, B., Collier, M. H., & Rogstad, S. H. (2005). Pollution and genetic structure of North American populations of the common dandelion (Taraxacum officinale). Environmental Monitoring and Assessment, 105, 341–357.

    Article  CAS  Google Scholar 

  • Kleckerová, A., & Dočekalová, H. (2014). Dandelion plants as a biomonitor of urban area contamination by heavy metals. International Journal of Environmental Research, 8, 157–164.

    Google Scholar 

  • Kobierski, M., & Malczyk, P. (2016). Mercury in the soils of the hunting plots and the surrounding forests. Sylwan, 160, 433–440.

    Google Scholar 

  • Kováčik, J., Dudáš, M., Hedbavny, J., & Mártonfi, P. (2016). Dandelion Taraxacum linearisquameum does not reflect soil metal content in urban localities. Environmental Pollution, 218, 160–167.

    Article  Google Scholar 

  • Králová, L., Száková, J., Kubík, Š., Tlustoš, P., & Balík, J. (2010). The variability of arsenic andother risk element uptake by individual plant species growing on contaminated soils. Soil andSediment Contamination, 19, 617–634.

    Article  Google Scholar 

  • Li, X., Poon, C., & Liu, P. S. (2001). Heavy metal contamination of urban soils and street dustsin Hong Kong. Applied Geochemistry, 16, 1361–1368.

    Article  CAS  Google Scholar 

  • Li, Z., Feng, X. B., Li, G. H., Bi, X. Y., Zhu, J. M., Qin, H. B., Dai, Z. H., Liu, J. L., Li, Q. H., & Sun, G. Y. (2013). Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China. Environmental Pollution, 182, 408–416.

    Article  CAS  Google Scholar 

  • Li, J. C., Liu, Y., Yang, Y. G., & Qin, Z. D. (2017). Characterization of soil heavy metal contamination and potential ecological risk in the urban-rural transition zone of Taiyuan city, China. Environmental Engineering and Management Journal, 16, 413–420.

    Google Scholar 

  • Lyubomirova, V., Mihaylova, V., & Djingova, R. (2015). Effects of soil properties andanthropogenic activity on the transfer of 52 elements in the system soil/Taraxacum officinale. Journal of Soils and Sediments, 15, 1549–1557.

    Article  CAS  Google Scholar 

  • Malawska, M., & Wiłkomirski, B. (2001). An analysis of soil and plant (Taraxacumofficinale) contamination with heavy metals and polycyclic aromatic hydrocarbons (PAHs) inthe area of the railway junction Iława Główna, Poland. Water, Air and Soil Pollution, 127, 339–349.

    Article  CAS  Google Scholar 

  • Maleci, L., Buffa, G., Wahsha, M., & Bini, C. (2014). Morphological changes induced by heavy metals in dandelion (Taraxacum officinale Web.) growing on mine soils. Journal of Soilsand Sediments, 14, 731–743.

    Article  Google Scholar 

  • Malinowska, E., Jankowski, K., Wiśniewska-Kadżajan, B., Sosnowski, J., Kolczarek, R., Jankowska, J., & Ciepiela, G. A. (2015). Content of zinc and copper in selected plants growing along a motorway. Bulletin of Environmental Contamination and Toxicology, 95, 638–643.

    Article  CAS  Google Scholar 

  • Malizia, D., Giuliano, A., Ortaggi, G., & Masotti, A. (2012). Common plants as alternative analytical tools to monitor heavy metals in soil. Chemistry Central Journal, 6, S6.

    Article  CAS  Google Scholar 

  • Mcllwaine, R., Doherty, R., Cox, S. F., & Cave, M. (2017). The relationship between historical development and potentially toxic element concentrations in urban soils. Environmental Pollution, 220, 1036–1049.

    Article  Google Scholar 

  • Meloun, M., & Militký, J. (2004). Statistical analysis of the experimental data. Praha: (in Czech) Academia.

    Google Scholar 

  • Modlingerová, V., Száková, J., Sysalová, J., & Tlustoš, P. (2012). The effect of intensive trafficon soil and vegetation risk element contents as affected by the distance from a highway. Plant, Soil and Environment, 58, 379–384.

    Article  Google Scholar 

  • Modrzewska, B., & Wyszkowski, M. (2014). Trace metals content in soils along the state road 51 (northeastern Poland). Environmental Monitoring and Assessment, 186, 2589–2597.

    Article  CAS  Google Scholar 

  • Mossop, K. F., Davidson, C. M., Ure, A. M., Shand, C. A., & Hillier, S. J. (2009). Effect of EDTA on the fractionation and uptakeby Taraxacum officinale of potentially toxic elements in soilfrom former chemical manufacturing sites. Plant and Soil, 320, 117–129.

    Article  CAS  Google Scholar 

  • Paulsen, E. (2002). Contact sensitization from compositae—containing herbal remedies and cosmetics. Contact Dermatitis, 47, 189–198.

    Article  Google Scholar 

  • Remon, E., Bouchardon, J. L., Le Guédard, M., Bessoule, J. J., Conord, C., & Faure, O. (2013). Are plants useful as accumulation indicators of metal bioavailability? Environmental Pollution, 175, 1–7.

    Article  CAS  Google Scholar 

  • Sauerbeck, D.(1985). Funktionen, Güte und Belastbarkeit des Bodens aus agrikulturchemischer Sicht. Materialien zur Umweltforschung, Kohlhammer Verlag Stuttgart.

  • Savinov, A. B., Kurganova, L. N., & Shekunov, Y. I. . (2007). Lipid peroxidation rates in Taraxacum officinale Wigg. and Vicia cracca L. from biotopes with different levels of soil pollution with heavy metals. Russian Journal of Ecology, 38, 174–180.

    Article  CAS  Google Scholar 

  • Sharma, K., Basta, N. T., & Grewal, P. S. (2015). Soil heavy metal contamination in residentialneighborhoods in post—industrial cities and its potential human exposure risk. Urban Ecosystems Journal, 18, 115–132.

    Article  Google Scholar 

  • Staszewski, T., Malawska, M., Sudnik-Wójcikowska, B., Galera, H., & Wiłkomirski, B. (2015). Soil and plants contamination with selected heavy metals in the area of a railway junction. Archives of Environmental Protection, 41, 35–42.

    Article  Google Scholar 

  • Sun, Z., Chen, J. J., Wang, X. W., & Lv, C. (2016). Heavy metal accumulation in native plants at a metallurgy waste site in rural areas of Northern China. Ecological Engineering, 86, 60–68.

    Article  Google Scholar 

  • Taylor, T. P., Ding, M., Ehler, D. S., Foreman, T. M., Kaszuba, J. P., & Sauer, N. N. (2003). Beryllium in the environment: a review. Journal of Environmental Science and Health, Part A, 38, 439–469.

    Article  Google Scholar 

  • Thornton, I. (2012). Environmental geochemistry: 40 years research at Imperial College, London, UK. Applied Geochemistry, 27, 939–953.

    Article  CAS  Google Scholar 

  • Tikman, P., Vachtl, M. (2010). Czech Republic’s railway network development. (in Czech) Urbanismus a územní rozvoj 13, 58–70.

  • Vácha, R., Skála, J., Čechmánková, J., Horváthová, V., & Hladík, J. (2015). Toxic elements and persistent organic pollutants derived from industrial emissions in agricultural soils of the Northern Czech Republic. Journal of Soils and Sediments, 15, 1813–1824.

    Article  Google Scholar 

  • Vaculík, M., Jurkovič, Ľ., Matejkovič, P., Molnárová, M., & Lux, A. (2013). Potential risk of arsenic and antimony accumulation by medicinal plants naturally growing on old mining sites. Water, Air and Soil Pollution, 224, 1546.

    Article  Google Scholar 

  • Vanni, G., Cardelli, R., Marchini, F., Saviozzi, A., & Guidi, L. (2015). Are the physiological andbiochemical characteristics in dandelion plants growing in an urban area (Pisa, Italy) indicative of soil pollution? Water, Air and Soil Pollution, 226, 124–139.

    Article  Google Scholar 

  • Wei, S., Zhou, Q., & Mathews, S. (2008). A newly found cadmium accumulator—Taraxacum mongolicum. Journal of Hazardous Materials, 159, 544–547.

    Article  CAS  Google Scholar 

  • WHO. (2007). WHO guidelines for assessing quality of herbal medicines with reference to contaminants and residues. Geneva: World Health Organization.

    Google Scholar 

  • Wiłkomirski, B., Sudnik-Wójcikowska, B., Galera, H., Wierzbicka, M., & Malawska, M. (2011). Railway transportation as a serious source of organic and inorganic pollution. Water, Air and Soil Pollution, 218, 333–345.

    Article  Google Scholar 

  • Zhao, Z., & Hazelton, P. (2016). Evaluation of accumulation and concentration of heavy metals in different urban roadside soil types in Miranda Park, Sydney. Journal of Soils andSediments, 16, 2548–2556.

    Article  CAS  Google Scholar 

  • Zheng, Y. J., Chen, Y. P., Maltby, L., & Jin, X. L. (2016). Highway increases concentrations of toxic metals in giant panda habitat. Environmental Science and Pollution Research, 23, 21262–21272.

    Article  CAS  Google Scholar 

Download references

Funding

Authors thank for financial support of the GAČR 17-00859S project. Correction and improvement of language was provided by the Proof-Reading-Service.com Ltd., Devonshire Business Centre, Works Road, Letchworth Garden City SG6 1GJ, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiřina Száková.

Electronic supplementary material

ESM 1

(DOCX 14kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fröhlichová, A., Száková, J., Najmanová, J. et al. An assessment of the risk of element contamination of urban and industrial areas using Taraxacum sect. Ruderalia as a bioindicator. Environ Monit Assess 190, 150 (2018). https://doi.org/10.1007/s10661-018-6547-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6547-0

Keywords

Navigation