Skip to main content

Advertisement

Log in

The effects of grazing intensity on soil processes in a Mediterranean protected area

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

We investigated the temporal and among-site differentiation of soil functionality properties in fields under different grazing intensities (heavy and light) and compared them to those found in their adjacent hedgerows, consisting either of wooden shrubs (Rubus canescens) or of high trees (Populus sp.), during the cold and humid seasons of the year. We hypothesized that greater intensity of grazing would result in higher degradation of the soil system. The grazing factor had a significant effect on soil organic C and N, microbial biomass C, microbial biomass N, microbial activity, and β-glucosidase, while acid phosphatase and urease activity were not found to differ significantly among the management systems. The intensity of grazing affected mostly the chemical properties of soil (organic C and N) and altered significantly the composition of the soil microbial community, as lower C:N ratio of the microbial biomass indicates the dominance of bacteria over fungi in the heavily grazed fields. All estimated biological variables presented higher values in the humid period, although the pattern of differentiation was similar at both sampling times, revealing that site-specific variations were more pronounced than the time-specific ones. Our results indicate that not all C, N, and P dynamics were equally affected by grazing. Management plans applied to pastures, in order to improve soil quality properties and accelerate passive reforestation, should aim at the improvement of soil parameters related primarily to C and secondly to N cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adler, P., Raff, D., & Lauenroth, W. (2001). The effect of grazing on the spatial heterogeneity of vegetation. Oecologia, 128(4), 465–479.

    Article  CAS  Google Scholar 

  • Aerts, R., & Chapin, F. S., III. (2000). The mineral nutrition of wild plants revisited: a reevaluation of processes and patterns. Advances in Ecological Research, 30, 1–67.

    CAS  Google Scholar 

  • Alexander, M. (1977). Introduction to soil microbiology. New York: Wiley.

    Google Scholar 

  • Allen, S. E. (1974). Chemical analysis of ecological materials. Oxford: Blackwell.

    Google Scholar 

  • Allison, S. D., & Jastrow, J. D. (2006). Activities of extracellular enzymes in physically isolated fractions of restored grassland soils. Soil Biology and Biochemistry, 38(11), 3245–3256.

    Article  CAS  Google Scholar 

  • Altesor, A., Piñeiro, G., Lezama, F., Jackson, R. B., Sarasola, M., & Paruelo, J. M. (2006). Ecosystem changes associated with grazing in subhumid South American grasslands. Journal of Vegetation Science, 17(3), 323–332.

    Article  Google Scholar 

  • Bardgett, R. D., Jones, A. C., Jones, D. L., Kemmitt, S. J., Cook, R., & Hobbs, P. J. (2001). Soil microbial community patterns related to the history and intensity of grazing in sub-montane ecosystems. Soil Biology & Biochemistry, 33(12–13), 1653–1664.

    Article  CAS  Google Scholar 

  • Bardgett, R. D., Lovell, R. D., Hobbs, P. J., & Jarvis, S. C. (1999). Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biology & Biochemistry, 31(7), 1021–1030.

    Article  CAS  Google Scholar 

  • Bardgett, R. D., Wardle, D. A., & Yeates, G. W. (1998). Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biology & Biochemistry, 30(14), 1867–1878.

    Article  CAS  Google Scholar 

  • Berg, M. P., & Hemerik, L. (2004). Secondary succession of terrestrial isopod, centipede, and millipede communities in grasslands under restoration. Biology and Fertility of Soils, 40(3), 163–170.

    Article  Google Scholar 

  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. New York: Chapman and Hall.

    Google Scholar 

  • Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6), 837–842.

    Article  CAS  Google Scholar 

  • Buka, E. (2012). Patterns of plant diversity in areas surrounding Lake Pamvotis (undergraduate thesis). University of Ioannina (In Greek, abstract in English).

  • Carrera, A. L., Vargas, D. N., Campanella, M. V., Bertiller, M. B., Sain, C. L., & Mazzarino, M. J. (2005). Soil nitrogen in relation to quality and decomposability of plant litter in the Patagonian Monte, Argentina. Plant Ecology, 181(1), 139–151.

    Article  Google Scholar 

  • Chodak, M., & Niklińska, M. (2010). Effect of texture and tree species on microbial properties of mine soils. Applied Soil Ecology, 46(2), 268–275.

    Article  Google Scholar 

  • Cingolani, A. M. I., Cabido, M. R., Renison, D., & Solís Neffa, V. (2003). Combined effects of environment and grazing on vegetation structure in Argentine granite grasslands. Journal of Vegetation Science, 14(2), 223–232.

    Article  Google Scholar 

  • Conn, C., & Dighton, J. (2000). Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity. Soil Biology and Biochemistry, 32(4), 489–496.

    Article  CAS  Google Scholar 

  • Craine, J. M., Ballantyne, F., Peel, M., Zambatis, N., Morrow, C., & Stock, W. D. (2009). Grazing and landscape controls on nitrogen availability across 330 South African savanna sites. Austral Ecology, 34, 731–740.

    Article  Google Scholar 

  • Deng, L., Sweeney, S., & Shangguan, Z. P. (2014). Grassland responses to grazing disturbance: plant diversity changes with grazing intensity in a desert steppe. Grass and Forage Science, 69(3), 524–533.

    Article  Google Scholar 

  • Diaz-Fierros, F., Villar, M. C., Gil, F., Carballas, M., Leiros, M. C., Carballas, T., & Cabaneiro, A. (1988). Effect of cattle slurry fractions on nitrogen mineralization in soil. Journal of Agricultural Science, 110, 491–497.

    Article  Google Scholar 

  • Dilly, O., Blume, H. P., & Munch, J. C. (2003). Soil microbial activities in Luvisols and Anthrosols during 9 years of region-typical tillage and fertilisation practices in northern Germany. Biogeochemistry, 65(3), 319–339.

    Article  CAS  Google Scholar 

  • Friedl, M. A., & Brodley, C. E. (1997). Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, 61(3), 399–409.

    Article  Google Scholar 

  • Fterich, A., Mahdhi, M., & Mars, M. (2012). Impact of grazing on soil microbial communities along a chronosequence of Acacia tortilis subsp. raddiana in arid soils in Tunisia. European Journal of Soil Biology, 50, 56–63.

    Article  Google Scholar 

  • Gao, Y. Z., Giese, M., Lin, S., Sattelmacher, B., Zhao, Y., & Brueck, H. (2008). Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant and Soil, 307(1–2), 41–50.

    Article  CAS  Google Scholar 

  • Hellenic National Meteorological Service (2011). Ioannina—data period:1956–1997. The climate of Greece. http://www.hnms.gr/hnms/english/climatology/climatologyregiondiagramshtml?dr city=Ioannina

  • Hiltbrunner, D., Schulze, S., Hagedorn, F., Schmidt, M. W. I., & Zimmmermann, S. (2012). Cattle trampling alters soil properties and changes soil microbial communities in a Swiss sub-alpine pasture. Geoderma, 170, 369–377.

    Article  CAS  Google Scholar 

  • Islam, K. R., & Weil, R. R. (2000). Soil quality indicator properties in mid-Atlantic soils as influenced by conservation management. Journal of Soil and Water Conservation, 55(1), 69–78.

    Google Scholar 

  • Jenkinson, D. S. (1976). The effects of biocidal treatments on metabolism in soil-IV. The decomposition of fumigated organisms in soil. Soil Biology and Biochemistry, 8(3), 203–208.

    Article  CAS  Google Scholar 

  • Katsalirou, E., Deng, S., Nofziger, D. L., Gerakis, A., & Fuhlendorf, S. D. (2010). European journal of soil biology spatial structure of microbial biomass and activity in prairie soil ecosystems. European Journal of Soil Biology, 46(3–4), 181–189.

    Article  Google Scholar 

  • Keeler, B. L., Hobbie, S. E., & Kellogg, L. E. (2009). Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition. Ecosystems, 12(1), 1–15.

    Article  CAS  Google Scholar 

  • Köhler, B., Gigon, A., Edwards, P. J., Krüsi, B., Langenauer, R., Lüscher, A., & Ryser, P. (2005). Changes in the species composition and conservation value of limestone grasslands in Northern Switzerland after 22 years of contrasting managements. Perspectives in Plant Ecology, Evolution and Systematics, 7(1), 51–67.

    Article  Google Scholar 

  • Krämer, S., & Green, D. M. (2000). Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biology and Biochemistry, 32(2), 179–188.

    Article  Google Scholar 

  • Laskurain, N. A., Aldezabal, A., Olano, J. M., Loidi, J., & Escudero, A. (2013). Intensification of domestic ungulate grazing delays secondary forest succession: evidence from exclosure plots. Journal of Vegetation Science, 24(2), 320–331.

    Article  Google Scholar 

  • Liu, N., Kan, H. M., Yang, G. W., & Zhang, Y. J. (2015). Changes in plant, soil, and microbes in a typical steppe from simulated grazing: explaining potential change in soil C. Ecological Monographs, 85(2), 269–286.

    Article  Google Scholar 

  • Liu, Z., Li, Z., Nijs, I., & Bogaert, J. (2005). Fine-scale spatial pattern of Cleistogenes squarrosa population under different grazing intensities. Acta Prataculturae Sinica, 14(1), 11–17.

    Google Scholar 

  • Liu, X., Lindemann, W., Whitford, W., et al. (2000). Microbial diversity and activity of disturbed soil in the northern Chihuahuan Desert. Biology and Fertility of Soils, 32, 243–249.

    Article  Google Scholar 

  • Lodge, G. M., & Whalley, R. D. B. (1989). Native and natural pastures on the tablelands of New South Wales: a review and annotated bibliography. NSW Agriculture, Technical Bulletin, 35.

  • Mastrogianni, A., Papatheodorou, E. M., Monokrousos, N., Menkissoglu-Spiroudi, U., & Stamou, G. P. (2014). Reclamation of lignite mine areas with Triticum aestivum: the dynamics of soil functions and microbial communities. Applied Soil Ecology, 80, 51–59.

    Article  Google Scholar 

  • Matthews, A. (2013). Greening agricultural payments in the EU’s Common Agricultural Policy. Bio-based and Applied Economics, 2(1), 1–27.

    Google Scholar 

  • McLean, E. O. (1982). Soil pH and lime requirement. In A. L. Page, R. H. Miller, & D. R. Kenney (Eds.), Methods of soil analysis, part 2 (pp. 199–224). American Society of Agronomy: Madison.

    Google Scholar 

  • Monokrousos, N., Boutsis, G., & Diamantopoulos, J. D. (2014). Development of soil chemical and biological properties in the initial stages of post-mining deposition sites. Environmental Monitoring and Assessment, 186(12), 9065–9074.

    Article  CAS  Google Scholar 

  • Moore, J. C., & Hunt, H. W. (1988). Resource compartmentation and the stability of real ecosystems. Nature, 333, 261–263.

    Article  Google Scholar 

  • Morgan, J. A., Pataki, D. E., Körner, C., Clark, H., Del Grosso, S. J., Grünzweig, J. M., Knapp, A. K., Mosier, A. R., Newton, P. C. D., Niklaus, P. A., Nippert, J. B., Nowak, R. S., Parton, W. J., Polley, H. W., & Shaw, M. R. (2004). Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia, 140(1), 11–25.

    Article  CAS  Google Scholar 

  • Nautiyal, C. S., Chauhan, P. S., & Bhatia, C. R. (2010). Changes in soil physico-chemical properties and microbial functional diversity due to 14 years of conversion of grassland to organic agriculture in semi-arid agroecosystem. Soil and Tillage Research, 109(2), 55–60.

    Article  Google Scholar 

  • Nyssen, J., Temesgen, H., Lemenih, M., Zenebe, A., Haregeweyn, N., & Haile, M. (2008). Spatial and temporal variation of soil organic carbon stocks in a lake retreat area of the Ethiopian Rift Valley. Geoderma, 146(1–2), 261–268.

    Article  CAS  Google Scholar 

  • Ohtonen, R., Fritze, H., Pennanen, T., Jumpponen, A., & Trappe, J. (1999). Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia, 119(2), 239–246.

    Article  Google Scholar 

  • Papatheodorou, E. M. (2008). Responses of soil microbial communities to climatic and human impacts in Mediterranean regions. In T. X. Liu (Ed.), Soil ecology research developments (pp. 63–87). New York: Nova Science Publishers.

    Google Scholar 

  • Papatheodorou, E. M., Kapagianni, P., Georgila, E. D., Monokrousos, N., & Stamou, G. P. (2013). Predictability of soil succession patterns under different agricultural land use practices: continual conventional cultivation versus transformation to organic cultivation or fallow periods. Pedobiologia, 56(4–6), 233–239.

    Article  Google Scholar 

  • Pavel, R., Doyle, J., & Steinberger, Y. (2004). Seasonal pattern of cellulase concentration in desert soil. Soil Biology and Biochemistry, 36, 549–554.

    Article  CAS  Google Scholar 

  • Peco, B., Carmona, C. P., de Pablos, I., & Azcárate, F. M. (2012). Effects of grazing abandonment on functional and taxonomic diversity of Mediterranean grasslands. Agriculture, Ecosystems and Environment, 152, 27–32.

    Article  Google Scholar 

  • Peco, B., Sánchez, A. M., & Azcárate, F. M. (2006). Abandonment in grazing systems: consequences for vegetation and soil. Agriculture, Ecosystems and Environment, 113(1–4), 284–294.

    Article  Google Scholar 

  • Pineiro, G., Paruelo, J. M., Jobbágy, E. G., Jackson, R. B., & Oesterheld, M. (2009). Grazing effects on belowground C and N stocks along a network of cattle exclosures in temperate and subtropical grasslands of South America. Global Biogeochemical Cycles, 23(2).

  • Prieto, L. H., Bertiller, M. B., Carrera, A. L., & Olivera, N. L. (2011). Soil enzyme and microbial activities in a grazing ecosystem of Patagonian Monte, Argentina. Geoderma, 162(3–4), 281–287.

    Article  CAS  Google Scholar 

  • Ross, D. J. (1990). Influence of soil mineral nitrogen content on soil respiratory activity and measurements of microbial carbon and nitrogen by fumigation-incubation procedures. Australian Journal of Soil Research, 28, 311–321.

    Article  CAS  Google Scholar 

  • Rutigliano, F. A., D’Ascoli, R., & Virzo De Santo, A. (2004). Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover. Soil Biology and Biochemistry, 36(11), 1719–1729.

    Article  CAS  Google Scholar 

  • Shand, C. A., Williams, B. L., Dawson, L. A., Smith, S., & Young, M. E. (2002). Sheep urine affects soil solution nutrient composition and roots: differences between field and sward box soils and the effects of synthetic and natural sheep urine. Soil Biology and Biochemistry, 34(2), 163–171.

    Article  CAS  Google Scholar 

  • Singh, B. K., Millard, P., Whiteley, A. S., & Murrell, J. C. (2004). Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends in Microbiology, 12(8), 386–393.

    Article  CAS  Google Scholar 

  • Sinsabaugh, R. L., Reynolds, H., & Long, T. M. (2000). Rapid assay for amidohydrolase (urease) activity in environmental samples. Soil Biology and Biochemistry, 32(14), 2095–2097.

    Article  CAS  Google Scholar 

  • Somda, I., Harkous, S., & Brun, H. (1997). Bipolar heterothallism in B-group isolates of Leptosphaeria maculans. Plant Pathology, 46(6), 890–896.

    Article  Google Scholar 

  • Srivastava, A. K. (2012). Advances in citrus nutrition. Maharashtra: National Research Centre for Citrus Nagpur.

    Book  Google Scholar 

  • Stephens, S. E., Walker, J. A., Blunck, D. R., Jayaraman, A., Naugle, D. E., Ringelman, J. K., & Smith, A. J. (2008). Predicting risk of habitat conversion in native temperate grasslands. Conservation Biology, 22(5), 1320–1330.

    Article  Google Scholar 

  • Su, Y. Z., Li, Y. L., Cui, J. Y., & Zhao, W. Z. (2005). Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China. Catena, 59(3), 267–278.

    Article  Google Scholar 

  • Su, Y. Z., Zhao, H. L., Zhang, T. H., & Zhao, X. Y. (2004). Soil properties following cultivation and non-grazing of a semi-arid sandy grassland in northern China. Soil & Tillage Research, 75, 27–36.

    Article  Google Scholar 

  • Thornes, J. B. (2007). Modelling soil erosion by grazing: recent developments and new approaches. Geographical Research, 45(1), 13–26.

    Article  Google Scholar 

  • Trasar-Cepeda, C., Leirós, M. C., & Gil-Sotres, F. (2008). Hydrolytic enzyme activities in agricultural and forest soils. Some implications for their use as indicators of soil quality. Soil Biology and Biochemistry, 40, 2146–2155.

    Article  CAS  Google Scholar 

  • Tzialla, C. E., Veresoglou, D. S., Papakosta, D., & Mamolos, A. P. (2006). Changes in soil characteristics and plant species composition along a moisture gradient in a Mediterranean pasture. Journal of Environmental Management, 80(1), 90–98.

    Article  CAS  Google Scholar 

  • Wade, J. (1997). A study of vegetation composition and soil chemistry on five year non-rotational set-aside under four management regimes, (Ph.D dissertation), Essex, UK.

  • Wan, Y., Bao, Y., & Zhou, Q. (2010). Simultaneous adsorption and desorption of cadmium and tetracycline on cinnamon soil. Chemosphere, 80(7), 807–812.

    Article  CAS  Google Scholar 

  • Wang, L., Wang, D., Liu, J., Huang, Y., & Hodgkinson, K. C. (2011). Diet selection variation of a large herbivore in a feeding experiment with increasing species numbers and different plant functional group combinations. Acta Oecologica, 37(3), 263–268.

    Article  CAS  Google Scholar 

  • Wang, D., Wu, G. L., Zhu, Y. J., & Shi, Z. H. (2014). Grazing exclusion effects on above- and below-ground C and N pools of typical grassland on the Loess Plateau (China). Catena, 123, 113–120.

    Article  CAS  Google Scholar 

  • Wardle, D. A. (1992). A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews, 67(3), 321–358.

    Article  Google Scholar 

  • Wu, G. L., Du, G. Z., Liu, Z. H., & Thirgood, S. (2009). Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant and Soil, 319, 115–126.

    Article  CAS  Google Scholar 

  • Zhu, G. Y., Deng, L., Zhang, X. B., & Shangguan, Z. P. (2016). Effects of grazing exclusion on plant community and soil physicochemical properties in a desert steppe on the Loess Plateau, China. Ecological Engineering, 90, 372–381.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Monokrousos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panayiotou, E., Dimou, M. & Monokrousos, N. The effects of grazing intensity on soil processes in a Mediterranean protected area. Environ Monit Assess 189, 441 (2017). https://doi.org/10.1007/s10661-017-6161-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6161-6

Keywords

Navigation