Skip to main content

Advertisement

Log in

Copepod grazing and their impact on phytoplankton standing stock and production in a tropical coastal water during the different seasons

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The grazing rate of copepods on the total and size-fractionated phytoplankton biomass in a coastal environment (off Kochi, southwest coast of India) were measured during pre-monsoon (PRM), peak southwest monsoon (PKSWM), late southwest monsoon (LSWM) and post-southwest monsoon (PSWM). The phytoplankton standing stock (chlorophyll a-Chl. a) and growth rate (GR) were less during the PRM (Chl. a 0.58 mg m−3; GR 0.23 ± 0.02) and PSWM (Chl. a 0.89 mg m−3; GR 0.30 ± 0.05) compared to PKSWM (Chl. a 6.67 mg m−3; GR 0.43 ± 0.02) and LSWM (Chl. a 4.09 mg m−3; GR 0.40 ± 0.04). The microplankton contribution to the total Chl. a was significant during the PKSWM (41.83%) and LSWM (45.72%). Copepod density was lesser during the PRM (1354 No m−3) and PSWM (1606 No m−3) than during PKSWM and LSWM (4571 and 3432 No m−3, respectively). Seasonal changes in phytoplankton biomass, phytoplankton size structure, and copepod community were closely related to the hydrographical transformations in the study domain. Dominant calanoid copepods in the study region ingested 8.4 to 14.2% of their daily ration from phytoplankton during the PRM and PSWM, which increased to >50% during the PKSWM and LSWM. The cyclopoid Oithona similis was abundant during the PKSWM, ingesting only 21% of their daily ration from phytoplankton. Temporal variation in the phytoplankton biomass and copepod species composition caused differences in community level top-down control. The copepod community ingestion on phytoplankton was high during the LSWM (18,583 μg C m−3d−1), followed by PKSWM (9050 μg C m−3d−1), PSWM (1813 μg C m−3d−1), and PRM (946 μg C m−3d−1). During the low Chl. a period (PRM and PSWM), dominant calanoid copepods showed a positive selectivity for the micro- and nano-phytoplankton size fractions, whereas during the high Chl. a period (PKSWM and LSWM), they showed a positive selection for nano-phytoplankton fractions. Irrespective of the seasons, dominant calanoid copepods showed a negative selection of pico-phytoplankton fraction. The cyclopoid O. similis and Poecilostomatoid Corycaeus danae showed a positive selection of nano- and pico-phytoplankton fractions rather than micro-fraction. The grazing pressure of copepod community ingestion on micro-fraction was less (0.56% of the phytoplankton biomass and 1.06% of the phytoplankton production) during the PKSWM. This study provides, for the first time, clear findings on the seasonal variation in the top-down control of phytoplankton by copepods in a tropical coastal water ecosystem and discusses its implications on phytoplankton blooming, plankton food web, and biogeochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anjusha, A., Jyothibabu, R., Jagadeesan, L., Arya, P. M., Sudheesh, K., Kiran, K., Ullas, N., & Deepak, M. P. (2013). Trophic efficiency of plankton food webs: Observations from the Gulf of Mannar and the Palk Bay, Southeast Coast of India. Journal of Marine Systems, 115-116, 40–61.

    Article  Google Scholar 

  • Atkinson, A. (1996). Sub-Antarctic copepods in an oceanic, low chlorophyll environment: ciliate predation, food selectivity and impact on prey population. Marine Ecology Progress Series, 130, 85–96.

    Article  Google Scholar 

  • Banse, K. (1959). On the upwelling and bottom trawling off the southwest coast of India. Journal of Marine biological Association of India, 1, 33–49.

    Google Scholar 

  • Banse, K. (1994). Grazing and zooplankton production as key controls of phytoplankton production in the ocean. Oceanography, 7, 13–20.

    Article  Google Scholar 

  • Banse, K., Sumitra, V., & Madhupratap, M. (1996). On the possible causes of the seasonal phytoplankton blooms along the southwest coast of India. Indian Journal of Marine Sciences, 25, 283–289.

    Google Scholar 

  • Barmstedt, U., Gifford, D. J., Irigoien, X., Atkinson, A., & Roman, M. R. (2000). Feeding. In R. P. Harris, P. H. Wiebe, J. Lenz, H. R. Skjodal, & M. Huntley (Eds.), ICES zooplankton methodology manual (pp. 297–399). London: Academic Press.

    Chapter  Google Scholar 

  • Bautista, B., & Harris, R. P. (1992). Copepod gut contents, ingestion rates and grazing impact on phytoplankton in relation to size structure of zooplankton and phytoplankton during a spring bloom. Marine Ecology Progress Series, 82, 41–50.

    Article  Google Scholar 

  • Calbet, A. (2001). Mesozooplankton grazing impact on primary production: a global comparative analysis in marine ecosystems. Limnology and Oceanography, 46, 1824–1830.

    Article  Google Scholar 

  • Calbet, A., & Landry, M. R. (1999). Mesozooplankton influences on the microbial food web: direct and indirect trophic interactions in the oligotrophic open ocean. Limnology and Oceanography, 44, 1370–1380.

    Article  Google Scholar 

  • Calbet, A., & Saiz, E. (2005). The ciliate-copepod link in marine ecosystems. Aquatic Microbial Ecology, 38, 157–167.

    Article  Google Scholar 

  • Calbet, A., Michael, R. L., & Rebecca, D. S. (2000). Copepod grazing in a subtropical bay: species-specific responses to a midsummer increase in nanoplankton standing stock. Marine Ecology Progress Series, 193, 75–84.

    Article  Google Scholar 

  • Campbell, E. E., Knoop, W. T., & Bate, C. G. (1993). A comparison of phytoplankton biomass and primary production in three Eastern Cape estuaries. South African Journal of Aquatic Science, 87, 259–264.

    Google Scholar 

  • Campbell, R. G., Sherr, E. B., Ashjian, C. J., Plourde, S. P., Sherr, B. F., Hill, V., & Stockwell, D. A. (2009). Mesozooplankton prey preference and grazing impact in the western Arctic Ocean. Deep Sea Research Part II, Topical Studies in Oceanography, 56, 1274–1289.

    Article  Google Scholar 

  • Dagg, M. J. (1995). Ingestion of phytoplankton by the micro- and mesozooplankton communities in a productive subtropical estuary. Journal of Plankton Research, 17, 845–857.

    Article  Google Scholar 

  • Fessenden, L., & Cowles, T. J. (1994). Copepod predation on phagotrophic ciliates in Oregon coastal waters. Marine Ecology Progress Series, 107, 103–111.

    Article  Google Scholar 

  • Fileman, E., Petropavlovsky, A., & Harris, R. (2010). Grazing by the copepods Calanus helgolandicus and Acartia clausi on the protozooplankton community at station L4 in the Western English Channel. Journal of Plankton Research, 32, 709–724.

    Article  CAS  Google Scholar 

  • Froneman, P. W. (2000). Feeding studies of selected zooplankton in a temperate estuary, South Africa. Estuarine, Coastal and Shelf Science, 51, 543–552.

    Article  CAS  Google Scholar 

  • Froneman, P. W. (2004). Food web dynamics in a temperate temporarily open/closed estuary (South Africa). Estuarine, Coastal and Shelf Science, 59, 87–95.

    Article  CAS  Google Scholar 

  • Froneman, P. W. (2006). The importance of phytoplankton size in mediating trophic interactions within the plankton of a southern African estuary. Estuarine, Coastal and Shelf Science, 70, 693–700.

    Article  Google Scholar 

  • Frost, B. W. (1972). Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnology and Oceanography, 17, 805–815.

    Article  Google Scholar 

  • Garrido, S., Cruz, J., Santos, A. M. P., Ray, P., & Saiz, E. (2013). Effects of temperature, food type and food concentration on the grazing of the calanoid copepod Centropages chierchiae. Journal of Plankton Research, 35, 843–854.

    Article  CAS  Google Scholar 

  • Gifford, D. J., & Dagg, M. J. (1988). Feeding of the estuarine copepod Acartia tonsa Dana: carnivory vs herbivory in natural microplankton assemblages. Bulletin of Marine Sciences, 43, 458–468.

    Google Scholar 

  • Gifford, S. M., Rollwagen-Bollens, G., & Bollens, S. M. (2007). Mesozooplankton omnivory in the upper San Francisco Estuary. Marine Ecology Progress Series, 348, 33–46.

    Article  CAS  Google Scholar 

  • Goswami, S. C., & Padmavati, G. (1996). Zooplankton production, composition and diversity in the coastal waters of Goa. Indian Journal of Marine Sciences, 25, 91–97.

    Google Scholar 

  • Grasshoff, K., Ehrhardt, M., & Kremling, K. (1983). Methods of seawater analysis, (eds.) Grassholf, K., Ehrhardt, M., Kremling, K. (Verlag Chemie, Weinheim), 89–224.

  • Grunewald, A. C., Morales, C. E., Gonzalez, H. E., Sylvester, C., & Castro, L. R. (2002). Grazing impact of copepod assemblages and gravitational flux in coastal and oceanic waters off central Chile during two contrasting seasons. Journal of Plankton Research, 24, 55–67.

    Article  Google Scholar 

  • Huskin, I., Anadan, R., Medina, G., Head, R. N., & Harris, R. P. (2001). Mesozooplankton distribution and copepod grazing in the subtropical Atlantic near the Azores: influence of mesoscale structures. Journal of Plankton Research, 23, 671–691.

    Article  CAS  Google Scholar 

  • Iriarte, A., & Purdie, D. A. (1994). Size distribution of chlorophyll a biomass and primary production in a temperate estuary (Southampton Water): the contribution of photosynthetic picoplankton. Marine Ecology Progress Series, 115, 283–297.

    Article  CAS  Google Scholar 

  • Irigoien, X., & Castel, J. (1995). Feeding rates and productivity of the copepod Acartia bifilosa in a highly turbid estuary—the Gironde (SW France). Hydrobiologia, 311, 115–125.

    Article  Google Scholar 

  • Jansen, S. (2008). Copepods grazing on Coscinodiscus wailesii: a question of size?. Helgoland Marine Research, 62, 251–255.

  • Jeyaraj, N., Santhanam, P., Raju, P., Ananth, S., & Jothiraj, K. (2014). Alternative methods for marine harpacticoid copepod, Macrosetella gracilis production in marine fish larviculture. International Journal of Zoological Research, 10, 1–8.

    Article  Google Scholar 

  • Jyothibabu, R., Madhu, N. V., Jayalakshmi, K. V., Balachandran, K. K., Shiyas, C. A., Martin, G. D., & Nair, K. K. C. (2006). Impact of  fresh water influx on microzooplankton and its implications on the food web of tropical estuary (Cochin backwaters—India). Estuarine, Coastal and Shelf Science, 69, 505–518.

    Article  Google Scholar 

  • Jyothibabu, R., Asha Devi, C. R., Madhu, N. V., Sabu, P., Jayalakshmy, K. V., Jacob, J., Habeebrehman, H., Prabhakaran, M. P., Balasubramanian, T., & Nair, K. K. C. (2008). The response of microzooplankton (20–200 μm) to coastal upwelling and summer stratification in the southeastern Arabian Sea. Continental Shelf Research, 28, 653–671.

    Article  Google Scholar 

  • Jyothibabu, R., Mohan, A. P., Jagadeesan, L., Anjusha, A., Muraleedharan, K. R., Lallu, K. R., Kiran, K., & Ullas, N. (2013). Ecology and trophic preference of picoplankton and nanoplankton in the Gulf of Mannar and the Palk Bay, southeast coast of India. Journal of Marine Systems, 111-112, 29–44.

    Article  Google Scholar 

  • Kagami, M., Yoshida, T., Gurung, T. B., & Urabe, J. (2002). Direct and indirect effects of zooplankton on algal composition in in situ grazing experiments. Oecologia, 133, 356–363.

    Article  Google Scholar 

  • Kasturirangan, L.R. (1963). A key for the identification of the more common planktonic Copepoda of the Indian coastal waters, Publication No.2. Indian National Committee on Oceanic Research, 1–87.

  • Kibirige, I., & Perisinotto, R. (2003). In situ feeding rates and grazing impact of zooplankton in a South African temporarily open estuary. Marine Biology, 142, 357–367.

    Article  Google Scholar 

  • Kleppel, G. S. (1993). On the diets of calanoid copepods. Marine Ecology Progress Series, 99, 183–195.

  • Landry, M. R., Lorenzen, C. J., & Peterson, W. K. (1994). Mesozooplankton grazing in the Southern California Bight. II. Grazing impact and particulate flux. Marine Ecology Progress Series, 115, 73–85.

    Article  Google Scholar 

  • Lee, D. B., Song, H. Y., Park, C., & Choi, K. H. (2012). Copepod feeding in a coastal area of active tidal mixing: diel and monthly variations of grazing impacts on phytoplankton biomass. Marine Ecology, 33, 88–105.

    Article  Google Scholar 

  • Levinsen, H., Turner, J. T., Nielsen, T. G., & Hansen, B. W. (2000). On the trophic coupling between protists and copepods in arctic marine ecosystems. Marine Ecology Progress Series, 204, 65–77.

    Article  Google Scholar 

  • Li, C., Wang, R., & Sun, S. (2003). Grazing impact of copepods on phytoplankton in the Bohai Sea. Estuarine, Coastal and Shelf Science, 58, 487–498.

    Article  CAS  Google Scholar 

  • Lonsdale, D. J., Cosper, E. M., Kim, W. K., Doall, M., Divadeenam, A., & Jonasdottir, S. H. (1996). Food web interactions in the plankton of Long Island bays, with preliminary observations on brown tide effects. Marine Ecology Progress Series, 134, 247–263.

    Article  Google Scholar 

  • Madhu, N.V., Jyothibabu, R., Balachandran, K., Honey, U., Martin, G., Vijay, J., Shiyas, C., Gupta, G., & Achuthankutty, C. (2007). Monsoonal impact on planktonic standing stock and abundance in a tropical estuary (Cochin backwaters—India). Estuarine, Coastal and Shelf Science, 73, 54–64.

    Article  Google Scholar 

  • Madhupratap, M. (1987). Status and strategy of zooplankton of tropical Indian estuaries. A review. Bulletin of Plankton Society of Japan, 34, 65–81.

    Google Scholar 

  • Madhupratap, M., Haridas, P., Ramaiah, N., & Achuthankutty, C. T. (1992). Zooplankton of the southwest coast of India: abundance, composition, temporal and spatial variability in 1987. In B. N. Desai (Ed.), Oceanography of the Indian Ocean (pp. 99–112). New Delhi: Oxford & IBH.

    Google Scholar 

  • Madhupratap, M., Gopalakrishnan, T. C., Haridas, P., & Nair, K. K. C. (2001). Mesozooplankton biomass, composition and distribution in the Arabian Sea during the fall intermonsoon: implications of oxygen gradients. Deep-Sea Research II, 48, 1345–1368.

    Article  CAS  Google Scholar 

  • Morales, C. E., Bedo, A., Harris, R. P., & Tranter, P. R. G. (1991). Grazing of copepod assemblages in the north-east Atlantic: the importance of the small size fraction. Journal of Plankton Research, 13, 455–472.

    Article  Google Scholar 

  • Nakamura, Y., & Turner, J. T. (1997). Predation and respiration by the small cyclopoid copepod Oithona similis: how important is feeding on ciliates and heterotrophic flagellates? Journal of Plankton Research, 19, 1275–1288.

    Article  Google Scholar 

  • Nielsen, T. G., & Hansen, B. W. (1995). Plankton community structure and carbon cycling on the western coast of Greenland during and after the sedimentation of a diatom bloom. Marine Ecology Progress Series, 125, 239–257.

    Article  CAS  Google Scholar 

  • Noji, T. T. (1991). The influence of macrozooplankton on vertical particulate flux. Sarsia, 76, 1–9.

    Article  Google Scholar 

  • Ohman, M. D., & Runge, J. A. (1994). Sustained fecundity when phytoplankton resources are in short supply: omnivory by Calanus finmarchicus in the Gulf of St. Lawrence. Limnology and Oceanography, 39, 21–36.

    Article  CAS  Google Scholar 

  • Omari, M., & Ikeda, I. (1984). Methods in marine zooplankton ecology. New York, John Wiley and Sons lnc., pp. 256.

  • Padmavati, G., Goswami, S. C., & Vidya, P. S. (1997). Diurnal variation in zooplankton in the Zuari Estuary, west coast of India. Journal of the Marine Biological Association of India, 39, 166–171.

    Google Scholar 

  • Paffenhofer, G. A., Strickler, J. R., & Alcaraz, M. (1982). Suspension feeding by herbivorous calanoid copepods: a cinematographic study. Marine Biology, 67, 193–199.

    Article  Google Scholar 

  • Pagano, M., Champalbert, G. L., Aka, M., Kouassi, E., Arfi, R., Got, P., Troussellier, M., N’Dour, E. H., Corbin, D., & Bouvy, M. (2006). Herbivorous and microbial grazing pathways of metazooplankton in the Senegal River Estuary (West Africa). Estuarine, Coastal and Shelf Science, 67, 369–381.

    Article  Google Scholar 

  • Pakhomov, E. A., Verheye, H. M., Atkinson, A., Laubscher, R. K., & Taunton-Clark, J. (1997). Structure and grazing impact of the mesozooplankton community during late summer 1994 near South Georgia, Antarctica. Polar Biology, 18, 180–192.

    Article  Google Scholar 

  • Postel L., Fock, H., & Hagen, W. (2000). Biomass and abundance, ICES Zooplankton Methodology manual. Harris R.P., Wiebe. P.H., Leiz. J., Skjoldal et al., editors. Academic Press, 193–213.

  • Price, H. J., Paffenhofer, G. A., & Srickler, J. R. (1983). Modes of cell capture in calanoid copepods. Limnology and Oceanography, 28, 116–123.

    Article  Google Scholar 

  • Rollwagen-Bollens, G. C., & Landry, M. R. (2000). The biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). II. Mesozooplankton abundance, biomass, depth distribution and grazing. Marine Ecology Progress Series, 201, 43–56.

    Article  Google Scholar 

  • Rollwagen-Bollens, G. C., & Penry, D. L. (2003). Feeding dynamics of Acartia spp. copepods in a large, temperate estuary (San Francisco Bay), CA. Marine Ecology Progress Series, 257, 139–158.

    Article  Google Scholar 

  • Roman, M. R., & Anne, L. G. (1997). Copepod grazing in the equatorial Pacific. Limnology and Oceanography, 42, 623–634.

    Article  Google Scholar 

  • Saiz, E., & Calbet, A. (2011). Copepod feeding in the ocean: scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations. Hydrobiologia, 666, 181–196.

    Article  CAS  Google Scholar 

  • Sautour, B., Artigas, L. F., Delmas, D., Herbland, A., & Laborde, P. (2000). Grazing impact of micro- and mesozooplankton during a spring situation in coastal waters off the Gironde estuary. Journal of Plankton Research, 22, 531–552.

    Article  Google Scholar 

  • Sewell, R. (1999). The Copepoda of Indian seas (p. 407). Delhi: Biotech Books.

    Google Scholar 

  • Sterner, R. W. (1989). The role of grazing in phytoplankton succession (pp. 107–170). Berlin: Springer Verlag.

    Google Scholar 

  • Stoecker, D. K., & Capuzzo, J. M. (1990). Predation on protozoa: its importance to zooplankton. Journal of Plankton Research, 12, 891–908.

    Article  Google Scholar 

  • Tackx, M. L. M., Bakker, C., Francke, J. W., & Vink, M. (1989). Size and phytoplankton selection by Oosterschelde zooplankton. Netherlands Journal of Sea Research, 23, 35–43.

    Article  Google Scholar 

  • Tang, K. W., & Taals, M. (2005). Trophic modification of food quality by heterotrophic protists: species-specific effects on copepod egg production and egg hatching. Journal of Experimental Marine Biology and Ecology, 318, 85–98.

    Article  Google Scholar 

  • Turner, J. T. (2004). The importance of small planktonic copepods and their roles in pelagic marine food webs. Zoological Studies, 43, 255–266.

    Google Scholar 

  • UNESCO. (1994). Protocols for the Joint Global Ocean Flux Study (JGOFS). Core measurements, IOC manuals and guides 29 (p. 170). Paris: UNESCO.

    Google Scholar 

  • Vanderploeg, H. A., & Scavia, D. (1979a). Calculation and use of selectivity coefficients of feeding: zooplankton grazing. Ecological Modeling, 7, 135–149.

    Article  Google Scholar 

  • Vanderploeg, H. A., & Scavia, D. (1979b). Two electivity indices for feeding with special reference to zooplankton grazing. Journal of the Fisheries Research Board Canada, 36, 362–365.

    Article  Google Scholar 

  • Verity, P. G., & Paffenhöfer, G. A. (1996). An assessment of prey ingestion by copepods. Journal of Plankton Research, 18, 1767–1779.

    Article  Google Scholar 

  • Winberg, G. G. (1971). Methods for the estimation of production of aquatic animals (p. 175). London: Academic press.

    Google Scholar 

  • Zar, J. H. (1999). Biostatistical analysis (5th ed.p. 663). New Jersey: Prentice Hall.

    Google Scholar 

Download references

Acknowledgements

The authors thank the Director, CSIR-National Institute of Oceanography (NIO), India for facilities. The authors thank the Scientist-in-Charge, CSIR NIO RC Kochi for encouragement. The author L. Jagadeesan thank the CSIR for SRF funding. This is a CSIR-NIO, India contribution 5982. This study has been supported by ESSO-INCOIS funding under PFZ programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jyothibabu.

Electronic supplementary material

ESM 1

(DOCX 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagadeesan, L., Jyothibabu, R., Arunpandi, N. et al. Copepod grazing and their impact on phytoplankton standing stock and production in a tropical coastal water during the different seasons. Environ Monit Assess 189, 105 (2017). https://doi.org/10.1007/s10661-017-5804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5804-y

Keywords

Navigation