Skip to main content
Log in

Risk assessment of heavy metal contamination in sediments of a tropical lake

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The risk assessment of heavy metal contamination was carried out in sediments of an urban tropical lake system (Akkulam-Veli) under threat from rapid unplanned urbanization and poor sewage management. Heavy metals were selected due to their persistent and bioaccumulative nature. Sequential extraction of the metals was carried out to resolve the sediments to their component phases. Well-established models were employed for risk analysis. The two pathways of contamination—ingestion and dermal contact—were considered for assessing risk. Risk Assessment Code of each metal was determined based on the lability of it in the different component phases. Cd was found to be the most hazardous metal by virtue of its high concentration in exchangeable and carbonate phases. Hazard indices of the metals were determined based on their total concentration in Akkulam-Veli (AV) Lake sediments. All heavy metals studied fall well below the threshold limit. However, Cr, Pb, and As, on account of their known toxicity, need to be monitored. Ni content in the lake system could potentially cause cancer to 134 adults in a population of one million. Concentrations of other metals are at carcinogenically safe limits. The study stresses the looming hazard faced by the Akkulam-Veli Lake system by heavy metal contaminants and the urgency in formulating remedial management plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adakole, J. A., & Abolude, D. S. (2012). Pollutional status of Kubanni lake through metal concentrations in water and sediment columns, Nigeria. Research Journal of Environmental and Earth Sciences, 4(4), 424–427.

    CAS  Google Scholar 

  • Albering, H. J., Rila, J. P., Moonen, E. J. C., Hoogewerff, J. A., & Kleinjans, J. C. S. (1999). Human health risk assessment in relation to environmental pollution of two artificial freshwater lakes in the Netherlands. Environmental Health Pespectives, 107(1), 27–34.

    Article  CAS  Google Scholar 

  • Bilali, L.E., Rasmussen, P.E., Hall, G.E.M. & Fortin, D. (2002). Role of sediment composition in trace metal distribution in lake sediments. Appl. Geochem, 17, 1171–1181.

  • CESS (2009) Centre for Earth Science Studies, Trivandrum. Preparation of samples for XRF studies. www.cess.res.in Accessed 12 Jan 2009.

  • De Miguel, E., Iribarren, I., Chaco’n, E., Ordon˜ez, A., & Charlesworth, S. (2007). Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 66, 505–513.

    Article  Google Scholar 

  • El Wakeel, S. K., & Riley, J. P. (1957). The determination of organic carbon in marine sediments. Journal du Conseil / Conseil Permanent International pour l’Exploration de la Mer, 22, 180–183.

    Article  Google Scholar 

  • Habes, G., & Nigem, Y. (2006). Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan. Chemosphere, 65(11), 2114–2121.

    Article  Google Scholar 

  • Khairy, M. A., Kolb, M., Mostafa, A. R., El-Fiky, A., & Bahadir, M. (2009). Risk assessment of polycyclic aromatic hydrocarbons in a Mediterranean semi-enclosed basin affected by human activities. Journal of Hazardous Materials, 170, 389–397.

    Article  CAS  Google Scholar 

  • Krauskopf, K. B. (1979). Introduction to geochemistry (2nd ed.). Newyork: Mc Grawhill.

    Google Scholar 

  • Li, X., Shen, Z., Wai. O.W.H., & Li, Y.S. (2001) Chemical forms of Pb, Zn and Cu in Pearl river estuary. Marine pollution Bulletin, 42(3), 215–223.

  • Li, S., & Zhang, Q. (2010). Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River, China. Journal of Hazardous Materials, 181, 1051–1058.

    Article  CAS  Google Scholar 

  • Liu, X., Song, Q., Tang, Y., Li, W., Xu, J., & Wu, J. (2013). Human health risk assessment of heavy metals in soil- vegetable system: a multi medium analysis. Science of the Total Environment, 463–464, 530–540.

    Article  Google Scholar 

  • Mahmood, A., & Malik, R. N. (2014). Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arabian Journal of Chemistry, 7(1), 91–99.

    Article  CAS  Google Scholar 

  • Mason, B., & Moore, C. B. (1982). Principles of geochemistry (4th ed.). New York: John Wiley and Sons.

    Google Scholar 

  • Mc Clean, E. O. (1982). Soil pH and lime requirement. Methods of soil analysis. Part 2. Agronomy (Vol. 9, pp. 199–224). Madison: Am. Soc. Agronomy Inc.

    Google Scholar 

  • Pagnanelli, F., Moscardini, E., Giuliano, V., & Toro, L. (2004). Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area: pollution detection and affinity series. Environmental Pollution, 132, 189–201

  • Peng, J.F., Song, Y.H., Yuan, P., Cui, X.Y., & Qiu, G.L. (2009). The remediation of heavy metals contaminated sediment. Journal of Hazardous materials, 161, 633–640.

  • Perin, G., Craboledda, L., Lucchese, M., Cirillo, R., Dotta, L., Zanetta, M. L., & Oro, A. A. (1985). Heavy metal speciation in the sediments of northern Adriatic sea. A new approach for environmental toxicity determination. In T. D. Lakkas (Ed.), Heavy metals in the environment (Vol. 2). Edinburgh: CEP Consultants.

    Google Scholar 

  • Rai, P.K. (2009). Heavy Metal Phytoremediation from Aquatic Ecosystems with Special Reference to Macrophytes. Critical Reviews in Environmental Science and Technology, 39(9), 697–753.

  • Ramesh, S. T., Rameshbabu, N., Gandhimathi, R., Nidheesh, P. V., & Srikanth Kumar, M. (2012). Kinetics and equilibrium studies for the removal of heavy metals in both single and binary systems using hydroxyapatite. Applied Water Science, 2, 187–197.

    Article  CAS  Google Scholar 

  • STIC. (2012). Sophisticated Test and Instrumentation Centre, www.sticindia.com

  • Sun, Y., Zhou, Q., Xie, X., & Liu, R. (2010). Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. Journal of Hazardous Materials, 174, 455–462.

    Article  CAS  Google Scholar 

  • Swarnalatha, K., Letha, J., & Ayoob, S. (2013a). An investigation into the heavy metal burden of Akkulam–Veli Lake in south India. Environmental Earth Sciences, 68(3), 795–806.

    Article  CAS  Google Scholar 

  • Swarnalatha, K., Letha, J., & Ayoob, S. (2013b). Ecological risk assessment of a tropical lake system. Journal of Urban and Environmental Engineering, 7(2), 323–329.

    Article  Google Scholar 

  • Swarnalatha, K., Letha, J., Ayoob, S., & Sheela, A. M. (2014a). Identification of silicon as an appropriate normaliser for estimating the heavy metals enrichment of an urban lake system. Journal of Environmental Management, 129, 54–61.

    Article  Google Scholar 

  • Swarnalatha, K., Letha, J., & Ayoob, S. (2014b). Effect of seasonal variations on the surface sediment heavy metal enrichment of a lake system in South India. Environmental Monitoring and Assessment. doi:10.1007/s10661-014-3687-8.

    Google Scholar 

  • Singh, K.P., Malik, A., Sinha, S., Singh, V.K., & Murthy, R.C. (2005). Estimation of source of heavy metal contamination in sediments of Gomti river (India) using principal Component analysis. Water, Air, and Soil Pollution, 166, 321–341.

  • Stumm, W., & Morgan, J.J. (1996). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Wiley, New York.

  • Surija, B., & Branica, M. (1995). Distribution of Cd, Pb, Cu and Zn in carbonate sediments from the Krka river estuary obtained by sequential extraction. Science of the total environment, 170, 101–118.

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedopohl, K. H. (1961). Distribution of the elements in some major units of the earths crust. Geol Soc Am, 72, 175–192.

  • UNEP (1985). Reference methods for marine pollution studies. United Nations Environment Program Regional seas, pp. 31–39.

  • US EPA. (1989). Risk assessment guidance for superfund, volume I, human health evaluation manual. (part A) Interim Final EPA/540/l-89/002., Office of Emergency and Remedial Response U.S. Environmental Protection Agency, Washington, DC 20450.

  • US EPA. (1996). Soil screening guidance: technical background document. EPA/540/R-95/128. Office of Solid Waste and Emergency Response. US Environmental Protection Agency. Washington, DC. Available from: http://www.epa.gov/superfund/resources/soil/toc.htm#p1>.

  • US EPA. (1997). Exposure factors handbook—general factors. EPA/600/P-95/002Fa, vol. I. Office of Research and Development. National Center for Environmental Assessment. US Environmental Protection Agency. Washington, DC. Available from: http://www.epa.gov/ncea/pdfs/efh/front.pdf.

  • US EPA. (2004). Risk assessment guidance for superfund volume i: human health evaluation manual (part E, supplemental guidance for dermal risk assessment). Office of Superfund Remediation and Technology Innovation U.S. Environmental Protection Agency, Washington, DC, EPA/540/R/99/005.

  • US EPA. (2005). Integrated Risk Information System (IRIS). Available from: http://www.epa.gov/iris/subst/0278.htm#carc.

  • US EPA. (2006). National recommended water quality criteria. Office of Water and Office of Science and Technology. 24 pp.

  • Wang, S., Jia, Y., Wang, S., Wang, X., Wang, H., Zhao, Z., & Liu, B. (2010). Fractionation of heavy metals in shallow marine sediments from Jinzhou Bay, China. Journal of Environmental Sciences, 22(1), 23–31.

    Article  Google Scholar 

  • Wei, L., Yonglong, L., Tieyu, W., Wenyou, H., Wentao, J., Jonathan, E. N., Jong, S. K., & John, P. G. (2010). Ecological risk assessment of arsenic and metals in sediments of coastal areas of northern Bohai and Yellow Seas, China. Ambio, 39, 367–375. doi:10.1007/s13280-010-0077-5.

    Article  Google Scholar 

  • Weis, J. S., & Weis, P. (2004). Metal uptake, transport and release by wetland plants: implications for phytoremediation and remediation. Environment International, 30, 685–700.

    Article  CAS  Google Scholar 

  • Whiteley, J. D., & Pearce, N. J. G. (2003). Metal distribution during diagenesis in the contaminated sediments of Dulas Bay, Anglesey, N. Wales, UK. Applied Geochemistry, 18, 901–913.

    Article  CAS  Google Scholar 

  • Wu, B., Zhao, D. Y., Jia, H. Y., Zhang, Y., Zhang, X. X., & Cheng, S. P. (2009). Preliminary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing section, China. Bulletin of Environmental Contamination and Toxicology, 82, 405–409. doi:10.1007/s00128-008-9497-3.

    Article  CAS  Google Scholar 

  • Wu, Z., He, M., & Lin, C. (2011). Environmental impacts of heavy metals (Co, Cu, Pb, Zn) in surficial sediments of estuary in Daliao River and Yingkou Bay (northeast China): concentration level and chemical fraction. Environmental Earth Science, 66, 2417–2430. doi:10.1007/s12665-011-1466-1.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Director, Centre for Earth Science Studies (CESS), Thiruvananthapuram, and the Sophisticated Test and Instrumentation Centre, Cochin University of Science and Technology, CUSAT, Kochi, for extending laboratory facilities. The first author greatly acknowledges the financial assistance from the Kerala State Council for Science, Technology and Environment (KSCSTE), Government of Kerala, India

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Swarnalatha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swarnalatha, K., Letha, J., Ayoob, S. et al. Risk assessment of heavy metal contamination in sediments of a tropical lake. Environ Monit Assess 187, 322 (2015). https://doi.org/10.1007/s10661-015-4558-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4558-7

Keywords

Navigation