Skip to main content

Advertisement

Log in

Utilization of biochar sorbents for Cd2+, Zn2+, and Cu2+ ions separation from aqueous solutions: comparative study

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The objective of this study was to study the utilization of two different woody-derived biochars for Cd2+, Zn2+, and Cu2+ ions separation from aqueous solutions. Physicochemical characterization confirmed the main differences in sorbent surface area and cation-exchange capacity. The maximum cadmium, zinc, and copper sorption capacities were 1.99, 0.97, and 2.50 mg g−1 for biochar (BC) A; 7.80, 2.23, and 3.65 mg g−1 for BC B. Sorption processes can be affected by time and pH. The most of sorbed cadmium and zinc were bound on exchangeable fractions and copper oxidizable fractions. Chemical modification and FT-IR analyses confirmed the crucial roles of hydroxyl and mainly carboxyl functional groups in sorption processes of Cd2+, Zn2+, and Cu2+ ions by BC A and BC B. The garden wood rests with leaf mass-derived biochar can be utilized as an effective sorbent for bivalent ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19–33.

    Article  CAS  Google Scholar 

  • Azizian, S., & Fallah, R. N. (2010). A new empirical rate equation for adsorption kinetics at solid/solution interface. Applied Surface Science, 256, 5153–5156.

    Article  CAS  Google Scholar 

  • Bolan, N. S., Adriano, D. C., & Naidu, R. (2003). Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil-plant system. Reviews of Environmental Contamination and Toxicology, 177, 1–44.

    CAS  Google Scholar 

  • Chen, X., Chen, G., Chen, L., Lehmann, J., McBride, M. B., & Hay, A. G. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, 102, 8877–8884.

    Article  CAS  Google Scholar 

  • Chun, Y., Sheng, G. Y., Chiou, C. T., & Xing, B. S. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental Science and Technology, 38, 4649–4655.

    Article  CAS  Google Scholar 

  • Fallah, R. N., & Azizian, S. (2012). Removal of thiophenic compounds from liquid fuel by different modified activated carbon cloths. Fuel Processing Technology, 93, 45–52.

    Article  CAS  Google Scholar 

  • Friesl-Hanl, W., Platzer, K., Horak, O., & Gerzabek, M. H. (2009). Immobilising of Cd, Pb, and Zn contaminated arable soils close to a former Pb/Zn smelter: a field study in Austria over 5 years. Environmental Geochemistry and Health, 31, 581–594.

    Article  CAS  Google Scholar 

  • Frišták, V., Pipíška, M., Horník, M., Augustín, J., & Lesný, J. (2013). Sludge of wastewater treatment plants as Co2+ ions adsorbent. Chemical Papers, 67, 265–273.

    Google Scholar 

  • Frišták, V., Pipíška, M., Valovčiaková, M., Lesný, J., & Rozložník, M. (2014). Monitoring 60Co activity for the characterization of the sorption process of Co2+ ions in municipal activated sludge. Journal of Radioanalytical and Nuclear Chemistry, 299, 1607–1614.

    Article  Google Scholar 

  • Fuertes, A. B., Arbestain, M. C., Sevilla, M., Macia-Agullo, J. A., Fiol, S., Lopez, R., Smernik, R. J., Aitkenhead, W. P., Arce, F., & Macias, F. (2010). Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonization of corn stover. Australian Journal of Soil Research, 48, 618–626.

    Article  CAS  Google Scholar 

  • Gardea-Torresdey, J., Becker-Hapak, M. K., Hosea, J. M., & Darnall, D. W. (1990). Effect of chemical modification of algal carboxyl groups on metal ion binding. Environmental Science and Technology, 24, 1372–1378.

    Article  CAS  Google Scholar 

  • Gaskin, J. W., Steiner, C., Harris, K., Das, K. C., & Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of ASABE, 56, 2061–2069.

    Article  Google Scholar 

  • Gu, Z., Wu, M., Li, K., & Ning, P. (2013). Variation of heavy metal speciation during the pyrolysis of sediment collected from the Dianchi Lake, China. Arabian Journal of Chemistry. doi:10.1016/j.arabjc.2013.07.053.

    Google Scholar 

  • Han, Y., Boateng, A. A., Qi, P. X., Lima, I. M., & Chang, J. (2013). Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. Journal of Environmental Management, 118, 196–204.

    Article  CAS  Google Scholar 

  • Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A. R., Pullammanappallil, P., & Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology, 110, 50–56.

    Article  CAS  Google Scholar 

  • Iqbal, M., Saeed, A., & Zafar, S. I. (2009). FTIR spectrophotometry kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism od Cd2+ and Pb2+ removal by mango peel waste. Journal of Hazardous Materials, 164, 161–171.

    Article  CAS  Google Scholar 

  • Karer, J., Wimmer, B., Zehetner, F., Kloss, S., & Soja, G. (2013). Biochar application to temperate soils: effects on nutrient uptake and crop yield under field conditions. Agricultural and Food Science, 22, 390–403.

    Google Scholar 

  • Kim, W. K., Shim, T., Kim, Y. S., Hyun, S., Ryu, C., Park, Y. K., & Jung, J. (2013). Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresource Technology, 138, 266–270.

    Article  CAS  Google Scholar 

  • Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schawanninger, M., Gerzabek, M. H., & Soja, G. (2012). Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, 41, 990–1000.

    Article  CAS  Google Scholar 

  • Kloss, S., Zehetner, F., Oburger, E., Buecker, J., Kitzler, B., Wenzel, W. W., Wimmer, B., & Soja, G. (2014). Trace element concentration in leachates and mustard plant tissue (Sinapis alba L.) after biochar application to temperate soil. Science of the Total Environment, 481, 498–508.

    Article  CAS  Google Scholar 

  • Kolodynska, D., Wnetrzak, R., Leahy, J. J., Hayes, M. H. B., Kwapinski, W., & Hubicki, Z. (2012). Kinetic and adsorptive characterization of biochar in metal ions removal. Chemical Engineering Journal, 197, 295–305.

    Article  CAS  Google Scholar 

  • Lair, G. J., Gerzabek, M. H., Haberhauer, G., Jakusch, M., & Kirchmann, H. (2006). Response of the sorption behavior of Cu, Cd, and Zn to different soil managment. Journal of Plant Nutrition and Soil Science, 169, 60–68.

    Article  CAS  Google Scholar 

  • Lee, Y., Eum, P. R. B., Ryu, C., Park, Y. K., Jung, J., & Hyun, S. (2012). Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1. Bioresource Technology, 130, 345–350.

    Article  Google Scholar 

  • Lehmann, J., Joseph, S. (2009). Biochar for environmental management: science and technology, Earthscan/James James.

  • Loudon, G. M. (1984). Organic Chemistry. Massachusetts: Addison-Wesley Publishing Company, Reading.

    Google Scholar 

  • Lu, H., Zhang, W., Yang, Y., Huang, X., Wang, S., & Qiu, R. (2012). Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Research, 46, 854–862.

    Article  CAS  Google Scholar 

  • Melichová, Z., & Hromada, L. (2013). Adsorption of Pb2+ and Cu2+ ions from aqeous solutions on natural bentonite. Polish Journal of Environmental Studies, 22, 457–464.

    Google Scholar 

  • Mohan, D., Pittman, C. U., Bricka, M., Smith, F., Yancey, B., Mohammad, J., Steele, P. H., Alexandre-Franco, M. F., Gomez-Serrano, V., & Gong, H. (2007). Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of Colloid Interface Science, 310, 57–73.

    Article  CAS  Google Scholar 

  • OECD-Guideline 106 (2001): OECD Guideline for the testing of chemicals. Adsorption-Desorption using a batch equilibrium method. Organisation for Economic Co-operation and Development (OECD), Paris.

  • Özer, D., Dursun, G., & Özer, A. (2007). Methylene blue adsorption from aqueous solution by dehydrated peanut hull. Journal of Hazardous Materials, 177, 171–179.

    Article  Google Scholar 

  • Rauret, G., López-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., & Quevauviller, P. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.

    Article  CAS  Google Scholar 

  • Salih, H. H., Patterson, C. L., Sorial, G. A., Sinha, R., & Krishnan, R. (2011). The fate and transport of the SiO2 nanoparticles in a granular activated carbon bed and their impact on the removal of VOCs. Journal of Hazardous Materials, 193, 95–101.

    Article  CAS  Google Scholar 

  • Tica, D., Udovic, M., & Lestan, D. (2011). Immobilization of potentially toxic metals using different soil amendments. Chemosphere, 85, 577–583.

    Article  CAS  Google Scholar 

  • Trakal, L., Šigut, R., Šillerová, H., Faturíková, D., & Komárek, M. (2014). Copper removal from aqueous solution using biochar: effect of chemical activation. Arabian Journal of Chemistry, 7, 43–52.

    Article  CAS  Google Scholar 

  • Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A. R., & Ro, K. S. (2012). Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chemical Engineering Journal, 200–202, 673–680.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimír Frišták.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 339 kb)

ESM 2

(DOCX 256 kb)

ESM 3

(DOCX 245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frišták, V., Pipíška, M., Lesný, J. et al. Utilization of biochar sorbents for Cd2+, Zn2+, and Cu2+ ions separation from aqueous solutions: comparative study. Environ Monit Assess 187, 4093 (2015). https://doi.org/10.1007/s10661-014-4093-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4093-y

Keywords

Navigation