Skip to main content

Advertisement

Log in

Quercus ilex L. carbon sequestration capability related to shrub size

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

CO2 sequestration capacity of Quercus ilex L., an evergreen species developing in shrub and forest communities widely distributed in the Mediterranean Basin, was analysed. Experiments were carried out in the period of January to December 2009 on 20 shrubs of different size, growing at the Botanical Garden of Rome. At shrub level, the largest differences concern total photosynthetic leaf surface area per shrub and shrub volume. Shrubs structure significantly contribute to reduce total irradiance and air temperature below the canopy. Leaf mass per area is higher in sun leaves than in shade ones (20 ± 1 and 12 ± 2 mg cm − 2, respectively). Sun leaves are also characterised by the highest leaf thickness (78% higher in sun than in shade leaves), the spongy parenchyma thickness (71% higher in sun than in shade leaves) and the highest adaxial cuticle thickness (7.2 ± 1.2 and 4.7 ± 0.5 μm, respectively). Net photosynthetic rates (P N) of sun and shade leaves are the highest in spring, and shade leaves contribute 6% to the whole shrub P N. Q. ilex CO2 sequestration depends on shrub size. In particular, the CO2 sequestration per shrub was 0.20 ± 0.02 Kg CO2 year − 1 in small shrubs, and it was 75% and 98% lower than in medium and large ones. The highest CO2 sequestration is measured in spring, decreasing 77% during drought. Q. ilex may play a significant role in mitigating carbon dioxide concentration and lowering air and soil temperature in areas around the Mediterranean Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amthor, J. S. (1994). Plant respiration responses to the environment and their effects on the carbon balance. In R. E. Wilkinson (Ed.), Plant–environment interactions (pp. 501–554). New York: Marcel Dekker.

    Google Scholar 

  • Anderson, P. D., & Tomlinson, P. T. (1998). Ontogeny affect response of northern red oak seedlings to elevated CO2 and water stress. Carbon assimilation and biomass production. New Phytologist, 140, 477–491.

    Article  Google Scholar 

  • Ariosa, Y., Carrasco, D., Quesada, A., & Fernandez-Valiente, E. (2006). Incorporation of different N sources and light response curves of nitrogenase and photosynthesis by cyanobacterial blooms from rice fields. Microbial Ecology, 51, 394–403.

    Article  CAS  Google Scholar 

  • Atkin, O. K., Evans, J. R., Ball, M. C., & Siebke, K. (1998a). Relationship between the inhibition of leaf respiration by light and enhancement of leaf dark respiration following light treatment. Australian Journal of Plant Physiology, 25, 437–443.

    Article  Google Scholar 

  • Atkin, O. K., Evans, J. R., Ball, M. C., Siebke, K., Pons, T. L., & Lambers, H. (1998b). Light inhibition of leaf respiration: The role of irradiance and temperature. In I. M. Moller, P. Gardestrom, K. Gliminius, & E. Glaser (Eds.), Plant mitochondria: From gene to function (pp. 567–574). Leiden: Backhuys.

    Google Scholar 

  • Barbero, M., Loisel, R., & Quezel, P. (1992). Biogeography, ecology and history of Mediterranean Quercus ilex ecosystems. Vegetatio, 99/100, 19–34.

    Article  Google Scholar 

  • Boix-Fayos, C., De Vente, J., Albaladejo, J., & Martínez-Mena, M. (2009). Soil carbon erosion and stock as affect by land use changes at the catchment scale in Mediterranean ecosystems. Agriculture, Ecosystems and Environment, 133, 75–85.

    Article  Google Scholar 

  • Breshears, D. D., Nyhan, J. W., Heil, C. E., & Wilcox, B. P. (1998). Effects of woody plants on microclimate in a semiarid woodland: soil temperature and evaporation in canopy and intercanopy patches. International Journal of Plant Science, 159, 1010–1017.

    Article  Google Scholar 

  • Cai, Z. -Q., Slot, M., & Fan, Z. -X. (2005). Leaf development and photosynthetic properties of three tropical tree species with delayed greening. Photosynthetica, 43, 91–98.

    Article  CAS  Google Scholar 

  • Caldwell, M. M., Meister, H. P., Tehunen, J. D., & Lange, O. L. (1986). Canopy structure, light microclimate and leaf gas exchange of Quercus coccifera L. in a Portugese macchia: Measurements in different canopy layers and simulations with a canopy model. Trees, 1, 25–41.

    Article  Google Scholar 

  • Canadell, J. G., & Raupach, M. (2008). Managing forest for climate change mitigation. Science, 320, 1456–1457.

    Article  CAS  Google Scholar 

  • Cannel, M. G. R., & Thornley, J. H. M. (2000). Modelling the components of plant respiration: Some guiding principles. Annals of Botany, 85, 45–54.

    Article  Google Scholar 

  • Cernusca, A., & Seeber, M. C. (1981). Canopy structure, microclimate and the energy budget in different alpine plant communities. In J. Grace, E. D. Ford, & P. G. Jarvis (Eds.), Plants and their atmospheric environment, 21st (pp. 75–81). Oxford: Symposium.

    Google Scholar 

  • Crescente, M. F., Gratani, L., & Larcher, W. (2000). Shoot growth efficiency and production of Quercus ilex L. in different climate. Flora, 197, 2–9.

    Google Scholar 

  • Del Galdo, I., Six, J., Peressotti, A., & Cotrufo, M. F. (2003). Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Global Change Biology, 9, 1204–1213.

    Article  Google Scholar 

  • Evrendilek, F., Berberoglu, B., Taskinsu-Meydan, S., & Yilmaz, E. (2006). Quantifying carbon budget of conifer Mediterranean forest ecosystems, Turkey. Environmental Monitoring and Assessment, 119, 527–543.

    Article  CAS  Google Scholar 

  • Evrendilek, F., & Doygun, H. (2000). Assessing major ecosystem types and the challenge of sustainability in Turkey. Environmental Management, 26, 479–489.

    Article  Google Scholar 

  • García-Plazaola, J. I., Artetxe, U., Duñabeitia, M. K., & Becerril, J. M. (1999). Role of photoprotective systems of holm-oak (Quercus ilex) in the adaptation to winter conditions. Jounal of Plant Physiology, 155, 625–630.

    Google Scholar 

  • Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environmental Research Letters, 2, 1–13.

    Google Scholar 

  • Gratani, L., & Bombelli, A. (2001). Forecasted stability of Mediterranean evergreen species considering global changes. In G. Visconti, M. Beniston, E. D. Ianorelli, & D. Barba (Eds.), Global change and protected areas (pp. 245–252). Dordrecht: Kluwer.

    Google Scholar 

  • Gratani, L., & Bonito, A. (2009). Leaf traits variation during leaf expansion in Quercus ilex L. Photosynthetica, 47, 323–330.

    Article  CAS  Google Scholar 

  • Gratani, L., Covone, F., & Larcher, W. (2006). Leaf plasticity in response to light of three evergreen species of the Mediterranean maquis. Trees–Structure and Function, 20, 549–558.

    Google Scholar 

  • Gratani, L., & Foti, I. (1998). Estimating forest structure and shade tolerance of the species in a mixed deciduous broad-level forest in Abruzzo, Italy. Annali Botanici Fennici, 35, 75–83.

    Google Scholar 

  • Gratani, L., Pesoli, P., Crescente, M. F., Aichner, K., & Larcher, W. (2000). Photosynthesis as temperature indicator in Quercus ilex L. Global Planetary Change, 24, 153–163.

    Article  Google Scholar 

  • Gratani, L., & Varone, L. (2006). Carbon sequestration by Quercus ilex L. and Quercus pubescens Willd. and their contribution to decreasing air temperature in Rome. Urban Ecosystems, 9, 27–37.

    Article  Google Scholar 

  • Gratani, L., Varone, L., & Catoni, R. (2008). Relationship between net photosynthesis and leaf respiration in Mediterranean evergreen species. Photosynthetica, 46, 567–573.

    Article  Google Scholar 

  • Gunn, S., & Farrar, J. F. (1999). Effects of a 4°C increase in temperature on portioning of leaf area and dry mass, root respiration and carbohydrates. Functional Ecology, 13, 12–20.

    Article  Google Scholar 

  • Haase, P., Pugnaire, F. I., Clark, S. C., & Incoll, L. D. (2000). Photosynthetic rate and canopy development in the drought-deciduos shrub Anthyllis cytisoides L. Journal of Arid Environments, 46, 79–91.

    Article  Google Scholar 

  • Handoson, P. J., Isebrands, J. G., & Dixon, R. K. (1988). Ontogenetic patterns of CO2 of Quercus rubra L. leaves during three flushes on shoot growth. II. Insertion gradients of leaf photosynthesis. Forest Science, 34, 69–76.

    Google Scholar 

  • Hartz-Rubin, J. S., & De Lucia, E. H. (2001). Canopy development of a model herbaceous community exposed to elevated atmospheric CO2 and soil nutrients. Physiologia Plantarum, 113, 258–266.

    Article  CAS  Google Scholar 

  • Hennessy, J. T., Gibbens, R. P., Tromble, J. M., & Cardenas, M. (1985). Mesquite (Prosopis glandulosa Torr.) dune and interdunes in southern New Mexico: A study of soil properties and soil water relations. Journal of Arid Environments, 9, 7–38.

    Google Scholar 

  • IPCC (2007). Summary for policymakers. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jasal, R. S., Black, T. A., Cai, T., Ethier, G., Pepin, S., Brümmer, C., et al. (2010). Impact of nitrogen fertilization on carbon and water balances in a chronosequence of three Douglas-fir stands in the Pacific Northwest. Agricultural and Forest Meteorology, 150, 208–218.

    Article  Google Scholar 

  • Karlik, J. F., & Winer, A. M. (2001). Plant species composition, calculated leaf masses and estimated biogenic emissions of urban landscape types from a field survey in Phoenix, Arizona. Landscape and Urban Planning, 53, 123–134.

    Article  Google Scholar 

  • Kidron, G. J. (2009). The effect of shrub canopy upon surface temperatures and evaporation in the Negev Desert. Earth Surface Processes and Landforms, 34, 123–132.

    Article  Google Scholar 

  • Kieft, T. L., White, C. S., Loftin, S. R., Aguilar, R., Craig, J. A., & Skaar, D. A. (1998). Temporal dynamics in soil carbon and nitrogen resources at a grassland-shrublands ecotone. Ecology, 79, 671–683.

    Google Scholar 

  • Lal, M., & Singh, R. (1998). Carbon sequestration potential of Indian forests. Environmental Monitoring and Assessment, 60, 315–327.

    Article  Google Scholar 

  • Larcher, W. (2003). Physiological plant ecology. Heidelberg: Springer.

    Google Scholar 

  • Laumonier, Y., Edin, A., Kanninen, M., & Munandar, A. W. (2010). Landscape-scale variation in the structure and biomass of the hill dipterocarp forest of Sumatra: Implications for carbon stock assessments. Forest Ecology and Management, 259, 505–513.

    Article  Google Scholar 

  • Maseyk, K., Grünzweig, J. M., Rotenberg, E., & Yakir, D. (2008). Respiration acclimation contributes to high carbon-use efficiency in a seasonally dry pine forest. Global Change Biology, 14, 1553–1567.

    Article  Google Scholar 

  • Miller, P. C., Hajek, E., Poole, D. K., & Roberts, S. W. (1981). Microclimate and energy exchange. In P. C. Miller (Ed.), Resource use by chaparral and matorral. A comparison of vegetative function in two Mediterranean type ecosystem (pp. 97–121). New York: Springer.

    Google Scholar 

  • Moreno, J. M., & Oechel, W. C. (1995). Preface. In J. M. Moreno, & W. C. Oechel (Eds.), Global change and Mediterranean–type ecosystems. Ecological studies (Vol. 117, pp. V–VII). New York: Springer.

    Google Scholar 

  • Mu, H., Jiang, D., Wollenweber, B., Dai, T., Jing, Q., & Cao, W. (2010). Long-term low radiation decrease leaf photosynthesis, photochemical efficiency and grain yield in winter wheat. Journal of Agronomy and Crop Science, 196, 38–47.

    Article  CAS  Google Scholar 

  • Niinemets, U. (2007). Photosynthetic and resource distribution through plant canopies. Plant Cell Environment, 30, 1052–1071.

    Article  CAS  Google Scholar 

  • Okereke, C., & Dooley, K. (2010). Principles of justice in proposals and policy approaches to avoided deforestation: Towards a post-Kyoto climate agreement. Global Environmental Change, 20, 82–95.

    Article  Google Scholar 

  • Pan, Y., Birdsey, R., Hom, J., & McCullough, K. (2009). Separating effect of changes in atmospheric composition, climate and land-use on carbon sequestration of U.S. Mid-Atlantic temperate forests. Forest Ecology and Management, 259, 151–164.

    Article  Google Scholar 

  • Pereira, J. S., Mateus, J. A., Aires, L. M., Pita, G., Pio, C., David, J. S., et al. (2007). Net ecosystem carbon exchange in three contrasting Mediterranean ecosystem—the effect of drought. Biogeosciences, 4, 791–802.

    Article  CAS  Google Scholar 

  • Pyykkö, M. (1966). The leaf anatomy of East Patagonian xeromorphic plants. Annali Botanici Fennici, 3, 453–622.

    Google Scholar 

  • Rouhi, V., Samson, R., Lemeur, R., & Van Damme, P. (2007). Photosynthetic gas exchange characteristics in three different almond species during drought stress and subsequent recovery. Environmental Experimental Botany, 59, 117–129.

    Article  CAS  Google Scholar 

  • Rundel, P. W., & Jarrel, W. M. (1989). Water in the environment. In R. W. Pearcy, J. Ehleringer, H. A. Mooney, & P. W. Rundel (Eds.), Plant physiological ecology: field methods and instrumentation (pp. 29–56). London: Chapman and Hall.

    Google Scholar 

  • Ryan, M. G., Lavigne, M. B., & Gower, S. T. (1997). Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. Journal of Geophysical Research, 102, 28871–28884.

    Article  CAS  Google Scholar 

  • Sala, A., Sabaté, S., Gracia, C., & Tenhunen, J. D. (1994). Canopy structure within a Quercus ilex forested watershed; variations due to location, phonological development, and water availability. Trees, 8, 254–261.

    Article  Google Scholar 

  • Saxe, H., Cannell, M. G. R., Johnsen, Ø., Ryan, M. G., & Vourlitis, G. (2001). Tree and forest functioning in response to global warming. New Phytologist, 149, 369–400.

    Article  CAS  Google Scholar 

  • Scoles, R. J., & Archer, S. R. (1997). Tree-grass interactions in Savannas. Annual Review of Ecological Systems, 28, 517–544.

    Article  Google Scholar 

  • Snyder, R. L., Spano, D., Duce, P., Baldocchi, D., Xu, L., & Kyaw Tha Paw, U. (2006). A fuel dryness index for grassland fire-danger assessment. Agricultural and Forest Meteorology, 139, 1–11.

    Article  Google Scholar 

  • Stenberg, M., & Shoshany, M. (2001). Aboveground biomass allocation and water content relationship in Mediterranean trees and shrubs in two climatological regions in Israel. Plant Ecology, 157, 173–181.

    Article  Google Scholar 

  • Terradas, J., & Savé, R. (1992). The influence of summer and winter stress and water relationships on the distribution of Quercus ilex L. Vegetatio, 100, 137–145.

    Article  Google Scholar 

  • Valladares, F., Martinez-Ferri, E., Balaguer, L., Perez-Corona, E., & Manrique, E. (2000a). Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: A conservative resource-use strategy? New Phytologist, 148, 79–91.

    Article  CAS  Google Scholar 

  • Valladares, F., Wright, S. J., Lasso, E., Kitajima, K., & Pearcy, R. W. (2000b). Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology, 81, 1925–1936.

    Article  Google Scholar 

  • Walters, R. G. (2005). Towards an understanding of photosynthetic acclimation. Journal of Experimental Botany, 56, 435–447.

    Article  CAS  Google Scholar 

  • Wang, Y., Lia, Y., Yec, X., Chuc, Y., & Wang, X. (2010). Profile storage of organic/inorganic carbon in soil: From forest to desert. Science of the Total Environment, 408, 1925–1931.

    Article  CAS  Google Scholar 

  • Wessel, W. W., Tietema, A., Beier, C., Emmett, B. A., Peñuelas, J., & Riis-Nielson, T. (2004). A qualitative ecosystem assessment for different shrublands in western Europe under impact of climate change. Ecosystems, 7, 662–671.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loretta Gratani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gratani, L., Catoni, R. & Varone, L. Quercus ilex L. carbon sequestration capability related to shrub size. Environ Monit Assess 178, 383–392 (2011). https://doi.org/10.1007/s10661-010-1697-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1697-8

Keywords

Navigation