Skip to main content
Log in

Heavy metal content in the femora of yellow-necked mouse (Apodemus flavicollis) and wood mouse (Apodemus sylvaticus) from different types of polluted environment in Slovakia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Heavy metal content in the femora of yellow-necked mouse (Apodemus flavicollis) and wood mouse (Apodemus sylvaticus) caught in different polluted biotopes of a low hill level in Slovakia (Nováky and Kolín̆any) was investigated in the present study. Length, weight and histological structure of mouse bones have also been analysed. According to our results, higher concentrations of Cd, Ni, Fe, Cu and Zn were detected in the femora of A. flavicollis from Kolín̆any area. Similarly, we observed higher concentrations of Ni, Fe, Cu and Zn in the bones of A. sylvaticus trapped at the same biotope. Significant differences were observed for concentrations of Ni and Zn in both species (P < 0.05). The measured values for bone length and bone weight were higher in yellow-necked mice and wood mice from Nováky locality (P < 0.01). Histological observation of thin sections from femora of A. flavicollis and A. sylvaticus revealed an outer and inner non-vascular lamellar layer around a poorly developed reticular layer. We did not identify demonstrable changes in qualitative histological characteristics of the femora between the mice (A. flavicollis and A. sylvaticus separately) from different types of polluted environment. Also, no statistically significant differences for all the measured variables of primary osteons’ vascular canals were observed. Correlation analysis in yellow-necked mouse showed high positive relation between bone weight and bone length (r = 0.66), area and perimeter (r = 0.87) and perimeter and maximum diameter (r = 0.87). In wood mouse, high positive correlation between bone weight and bone length (r = 0.80), area and perimeter (r = 0.72), area and maximum diameter (r = 0.66) and perimeter and maximum diameter (r = 0.74) was found. Our results demonstrate slightly elevated accumulation of some heavy metals in the femora of yellow-necked mouse and wood mouse from Kolín̆any biotope and thus give an evidence of a contamination of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beamer, W. G., Shultz, K. L., Donahue, L. R., Churchill, G. A., Sen, S., Wergedal, J. R., et al. (2001). Quantitative trait loci for femoral and lumbar vertebral bone mineral density in C57BL/6J and C3H/HeJ inbred strains of mice. Journal of Bone and Mineral Research, 16, 1195–1206.

    Article  CAS  Google Scholar 

  • Bires, J., Bartko, P., & Huska, M. (1997). Distribution of risk elements in the organism of sheep after industrial intoxication with zinc. Spectroscopy Letters, 30, 1263–1277.

    Article  Google Scholar 

  • Coggins, A. M., Jennings, S. G., & Ebinghaus, R. (2006). Accumulation rates of the heavy metals lead, mercury and cadmium in ombrotrophic peatlands in the west of Ireland. Atmospheric Environment, 40, 260–278.

    Article  CAS  Google Scholar 

  • Currey, J. D. (2002). Bones: Structure and mechanics (pp. 14–21). New Jersey: Princeton University Press.

    Google Scholar 

  • Damek-Poprawa, M., & Sawicka-Kapusta, K. (2003). Damage to the liver, kidney, and testis with reference to burden of heavy metals in yellow-necked mice from areas around steelworks and zinc smelters in Poland. Toxicology, 186, 1–10.

    Article  CAS  Google Scholar 

  • Enlow, D. H., & Brown, S. O. (1956). A comparative histological study of fossil and recent bone tissues. Part I. Texas Journal of Science, 8, 405–412.

    Google Scholar 

  • Enlow, D. H., & Brown, S. O. (1958). A comparative histological study of fossil and recent bone tissues. Part III. Texas Journal of Science, 10, 187–230.

    Google Scholar 

  • Erben, R. G. (1996). Trabecular and endocortical bone surfaces in the rat: Modeling or remodeling? Anatomical Record, 246, 39–46.

    Article  CAS  Google Scholar 

  • Friberg, L., Nordberg, G. F., & Vouk, V. B. (1986). Handbook on the toxicology of metals (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Havill, L. M. (2003). Osteon remodeling dynamics in Macaca mulatta: Normal variation with regard to age, sex and skeletal maturity. Calcified Tissue International, 74, 95–102.

    Article  Google Scholar 

  • Ieradi, L. A., Moreno, S., Bolívar, J. P., Cappai, A., Di Benedetto, A., & Cristaldi, M. (1998). Free-living rodents as bioindicators of genetic risk in natural protected areas. Environmental Pollution, 102, 265–268.

    Article  CAS  Google Scholar 

  • Ieradi, L. A., Zima, J., Allegra, F., Kotlánová, E., Campanella, L., Grossi, R., et al. (2003). Evaluation of genotoxic damage in wild rodents from a polluted area in the Czech Republic. Folia Zoologica, 52, 57–66.

    Google Scholar 

  • Janc̆ová, A., Massányi, P., & Gálová, J. (2002). The concentration of cadmium and lead in liver and kidneys in Apodemus flavicollis and Cleithrionomys glareolus. Folia Veterinaria, 46, 65–67.

    Google Scholar 

  • Janc̆ová, A., Massányi, P., Nad’, P., Koréneková, B., Skalická, M., Drábeková, J., et al. (2006). Accumulation of heavy metals in selected organs of yellow necked mouse (Apodemus flavicollis). Ekológia, 25, 19–26.

    Google Scholar 

  • Kido, T., Nogawa, K., Hochi, Y., Hayano, M., Honda, R., Tsuritani, I., et al. (1993). The renal handling of calcium and phosphorus in environmental cadmium-exposed subjects with renal dysfunction. Journal of Applied Toxicology, 13, 43–47.

    Article  CAS  Google Scholar 

  • Kramárová, M., Massányi, P., Janc̆ová, A., Toman, R., Slamec̆ka, J., Tataruch, F., et al. (2005). Concentration of cadmium in liver and kidneys of some wild and farm animals. Bulletin of the Veterinary Institute in Puøawy, 49, 465–469.

    Google Scholar 

  • Martiniaková, M., Grosskopf, B., Vondráková, M., Omelka, R., & Fabiš, M. (2005). Observation of the microstructure of rat cortical bone tissue. Scripta Medica, 78, 45–50.

    Google Scholar 

  • Martiniaková, M., Grosskopf, B., Omelka, R., Vondráková, M., & Bauerová, M. (2006). Differences among species in compact bone tissue microstructure of mammalian skeleton: Use of a discriminant function analysis for species identification. Journal of Forensic Sciences, 51, 1235–1239.

    Article  Google Scholar 

  • Martiniaková, M., Grosskopf, B., Omelka, R., Dammers, K., Vondráková, M., & Bauerová, M. (2007). Histological study of compact bone tissue in some mammals: A method for species determination. International Journal of Osteoarchaeology, 17, 82–90.

    Article  Google Scholar 

  • Metcheva, R., Teodorova, S., & Topashka-Ancheva, M. (2001). A comparative analysis of the heavy metals and toxic elements loading indicated by small mammals in different Bulgarian regions. Acta Zoologica Bulgarica, 53, 61–80.

    Google Scholar 

  • Milton, A., Johnson, M. S., & Cooke, J. A. (2002). Lead within ecosystems on metalliferous mine tailings in Wales and Ireland. The Science of the Total Environment, 299, 177–190.

    Article  CAS  Google Scholar 

  • Milton, A., Cooke, J. A., & Johnson, M. S. (2004). A comparison of cadmium in ecosystems on metalliferous mine tailings in Wales and Ireland. Water, Air and Soil Pollution, 153, 157–172.

    Article  CAS  Google Scholar 

  • Moser-Veillon, R. B. (1995). Zinc needs and homeostasis during lactation. Analyst, 120, 895–897.

    Article  CAS  Google Scholar 

  • Nowak, R. M. (1991). Walker’s mammals of the world (Vol II). Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • O’Brien, D. J., Kaneene, J. B., & Poppenga, R. H. (1993). The use of mammals as sentinels for human exposure to toxic contaminants in the environment. Environmental Health Perspectives, 99, 351–368.

    Article  Google Scholar 

  • Osweiler, G. D., Carson, T. L., Buck, W. B., & Van Gelder, G. A. (1985). Clinical and diagnostic veterinary toxicology. Iowa: Kendall/Hunt.

    Google Scholar 

  • Paine, R. R., & Godfrey, L. R. (1997). The scaling of skeletal microanatomy in non-human primates. Journal of Zoology, 241, 803–821.

    Article  Google Scholar 

  • Przyslawski, J., Boleslawska, I., Duda, G., Maruszewska, M., & Gertig, H. (1998). Use of sanitary index of diet to estimate potential risk of heavy metals occurring in daylong food rations of different groups of population (in Polish). Bromatologia i Chemia Toksykologiczna, 31, 135.

    Google Scholar 

  • Rho, J. Z., Kukn-Spearing, L., & Zioupos, P. (1998). Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics, 20, 92–102.

    Article  CAS  Google Scholar 

  • Ricqlés, A. J., de Meunier, F. J., Castanet, J., & Francillon-Vieillot, H. (1991). Comparative microstructure of bone. In B. K. Hall (Ed.), Bone 3, bone matrix and bone specific products (pp. 1–78). Boca Raton: CRC.

    Google Scholar 

  • Roberts, R. D., & Johnson, M. S. (1978). Dispersal of heavy metals from abandoned mine transference through terrestrial food chains. Environmental Pollution, 16, 293–310.

    Article  CAS  Google Scholar 

  • Shore, R. F., & Rattner, B. A. (2001). Ecotoxicology of wild mammals. London: Wiley.

    Google Scholar 

  • Stawarz, R., Zakrzewski, M., Marenc̆ík, A., & Hraška, Š. (2003). Heavy metal concentration in the toad Bufo Bufo from a region of Mochovce, Slovakia. Ekologia – Bratislava, 22, 292–297.

    CAS  Google Scholar 

  • Toman, R., Massányi, P., & Kovác̆ik, J. (1999). Growth and reproductive ability of male rabbits after cadmium intake from diet. Folia Veterinaria, 43, 182–185.

    CAS  Google Scholar 

  • Toman, R., Massányi, P., C̆upka, P., Lukác̆, N., Ducsay, L., Kolenkáš, M., et al. (2002). Changes in weight of some organs and weight of rats under the influence of cadmium receiving in the diet from wean to sexual maturity (in Slovak). Risk factors of the food chain: Proceeding book. Nitra, 154–157.

  • Topolska, K., Sawicka-Kapusta, K., & Cieslik, E. (2004). The effect of contamination of the Krakow region on heavy metals content in the organs of bank voles (Cleithrionomys glareolus, Schreber, 1780). Polish Journal of Environmental Studies, 13, 103–109.

    CAS  Google Scholar 

  • Velickovic, M. (2007). Measures of the developmental stability, body size and body condition in the black-striped mouse (Apodemus agrarius) as indicators of a disturbed environment in northern Serbia. Belgian Journal of Zoology, 137, 147–156.

    Google Scholar 

  • Wijnhoven, S., Leuven, R. S. E. W., van der Velde, G., Jungheim, G., Koelemij, E. I., de Vries, F. T., et al. (2007). Heavy-metal concentrations in small mammals from a diffusely polluted floodplain: Importance of species- and location-specific characteristics. Archives of Environmental Contamination and Toxicology, 52, 603–613.

    Article  CAS  Google Scholar 

  • Yusuf, K. S., & Oluwole, S. O. (2009). Heavy metal (Cu, Zn, Pb) contamination of vegetables in urban city: A case study in Lagos. Research Journal of Environmental Sciences, 3, 292–298.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Martiniaková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martiniaková, M., Omelka, R., Janc̆ová, A. et al. Heavy metal content in the femora of yellow-necked mouse (Apodemus flavicollis) and wood mouse (Apodemus sylvaticus) from different types of polluted environment in Slovakia. Environ Monit Assess 171, 651–660 (2010). https://doi.org/10.1007/s10661-010-1310-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1310-1

Keywords

Navigation