Skip to main content
Log in

Groundwater depth and elevation interpolation by kriging methods in Mohr Basin of Fars province in Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Prediction of groundwater depth and elevation is important in quantitative water management especially in arid areas. There are several basins in southwest of Iran, in Zagross Mountain, in which the water wells are distributed along a narrow elliptic ring band around the region. To find the most applicable interpolation method, both of the groundwater depth and elevation are predicted by different kriging methods. It is found that the groundwater elevation and depth can be predicted by different methods. Furthermore, it is found that the methods in which the trend is eliminated predicted the groundwater elevation and depth in central part of the region is with less standard error. Furthermore, the methods with no trend elimination, predicted the groundwater depths with less error near the water wells. Dividing the area to hydro-geologically homogeneous sub-areas improved the interpolation precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abedini, M. J., Nasseri, M., & Ansari, A. (2008). Cluster-based ordinary kriging of piezometric head in West Texas/New Mexico—testing of hypothesis. Journal of Hydrology (Amsterdam), 351, 360–367. doi:10.1016/j.jhydrol.2007.12.030.

    Article  Google Scholar 

  • Aboufirassi, M., & Marino, M. A. (1989). Kriging of water levels in the Sous aquifer. Journal of Math. Geology, 15(4), 537–551. doi:10.1007/BF01031176.

    Article  Google Scholar 

  • Ahmadi, S. H., & Sedghamiz, A. (2007). Geostatistical analysis of spatial and temporal variations of groundwater level. Journal of Environmental Monitoring Assessment, 129, 277–294. doi:10.1007/s10661-006-9361-z.

    Article  Google Scholar 

  • Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43–69.

    Article  Google Scholar 

  • Chiles, J. P., & Delfiner, A. (1999). Geostatistics (modeling spatial uncertainty). New York: Wiley.

    Google Scholar 

  • Cinnirella, S., Buttafuoco, G., & Pirrone, N. (2005). Stochastic analysis to assess the spatial distribution of groundwater nitrate concentrations in the Po catchments (Italy). Journal of Environmental Pollution, 133, 569–580. doi:10.1016/j.envpol.2004.06.020.

    Article  CAS  Google Scholar 

  • Davis, J. C. (2002). Statistics and data analysis in geology (622 pp.). Kansas: Kansas Geological Survey, The University of Kansas.

    Google Scholar 

  • Delhomme, J. P. (1978). Kriging in the hydro sciences. Water Resources, 1(5), 251–266. doi:10.1016/0309-1708(78)90039-8.

    Article  Google Scholar 

  • Desbarats, A. J., Logan, C. E., & Hinton, D. R. (2002). On the kriging of water table elevations using collateral information from a digital elevation model. Journal of Hydrology (Amsterdam), 255, 25–38. doi:10.1016/S0022-1694(01)00504-2.

    Article  Google Scholar 

  • Deutsch, C. V., & Journel, A. G. (1992). GSLIB. Geostatistical software library and user’s guide. New York: Oxford University Press.

    Google Scholar 

  • Domenico, P. A., & Schwartz, F. W. (1990). Physical and chemical hydrogeology. New York: Wiley.

    Google Scholar 

  • Dunlap, L. E., & Spinazola, J. M. (1984). Interpolating water-table altitudes in west-central Kansas using kriging techniques. Geological Survey Water-Supply-Paper, 2238, 19.

    Google Scholar 

  • Gambolati, G., & Vapoli, G. (1979a). Groundwater contour mapping in Venice by stochastic interpolator 1. Theory. Water Resources Research, 15(2), 281–290. doi:10.1029/WR015i002p00281.

    Article  Google Scholar 

  • Gambolati, G., & Vapoli, G. (1979b). A conceptual deterministic analysis of the kriging technique in hydrology. Water Resources Research, 15(3), 625–629. doi:10.1029/WR015i003p00625.

    Article  Google Scholar 

  • Ghahraman, B., & Sepaskhah, A. R. (2001). Autographic rain-gage network design for Iran by kriging. Journal of Science and Technology, 25(B4), 653–660.

    Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press.

    Google Scholar 

  • Goovaerts, P. (1999). Geostatistics in soil science: State of the art and perspectives. Geoderma, 89, 1–46. doi:10.1016/S0016-7061(98)00078-0.

    Article  Google Scholar 

  • Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology (Amsterdam), 228, 113–129. doi:10.1016/S0022-1694(00)00144-X.

    Article  Google Scholar 

  • Hevesi, J. A., Flint, A. L., & Istok, J. D. (1992). Precipitation estimation in mountainous terrain using multivariate geostatistics. Journal of Application Meteorology, 31, 677–688. doi:10.1175/1520-0450(1992)031<0677:PEIMTU>2.0.CO;2.

    Article  Google Scholar 

  • Hoeksema, R. L., Clapp, R. B., Thomas, A. L., Hunley, A. E., Farrow, N. D., & Dearstone, K. C. (1989). Cokriging model for estimation of water table elevation. Water Resources, 25(3), 429–438. doi:10.1029/WR025i003p00429.

    Article  Google Scholar 

  • Hu, K., Huang, Y., Li, H., Li, B., Chen, D., & White, R. (2005). Spatial variability of shallow groundwater level, electrical conductivity and nitrate concentration, and risk assessment of nitrate contamination in North China Plain. Journal of Environmental International, 31, 896–903. doi:10.1016/j.envint.2005.05.028.

    Article  CAS  Google Scholar 

  • Hudson, G., & Wackernagel, H. (1994). Mapping temperature using kriging with external drift. Theory and an example from Scotland. International Journal of Climatology, 14(1), 77–91. doi:10.1002/joc.3370140107.

    Article  Google Scholar 

  • Isaaks, E. H., & Srivastava, R. M. (1989). Applied geostatisics (561 pp.). New York: Oxford University Press.

    Google Scholar 

  • Journel, A. G., & Huijbregts, C. (1978). Mining geostatistics. New York: Academic Press.

    Google Scholar 

  • Kitanidis, P. K. (1997). Introduction to geostatistics (249 pp.). Cambridge: University Press.

    Book  Google Scholar 

  • Knotters, M., & Bierkens, M. F. P. (2001). Predicting water table depths in space and time using a regionalised time series model. Geoderma, 103, 51–77. doi:10.1016/S0016-7061(01)00069-6.

    Article  Google Scholar 

  • Knotters, M., Brus, D. J., & Oude Voshaar, J. H. (1995). A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations. Geoderma, 67, 227–246. doi:10.1016/0016-7061(95)00011-C.

    Article  Google Scholar 

  • Neuman, S. P., & Jacobsen, E. A. (1984). Analysis of non-intrinsic spatial variability by residual kriging with application to regional groundwater levels. Mathematical Geology, 16(5), 429–521. doi:10.1007/BF01886329.

    Article  Google Scholar 

  • Noshadi, M. A., & Sepaskhah, A. R. (2005). Application of geostatistics for potential evapotranspiration estimation. Journal of Science & Technology, Transaction B, Engineering, 29(B3), 343–355.

    Google Scholar 

  • Pardo-Ig_uzquiza, E. (1998). Comparison of geostatistical methods for estimating the areal average climatological rainfall mean using data on precipitation and topography. International Journal of Climatology, 30, 1031–1047.

    Article  Google Scholar 

  • Pebesma, E., & Kwaadsteniet, J. W. (1997). Mapping groundwater quality in the Netherlands. Journal of Hydrology (Amsterdam), 200, 364–386. doi:10.1016/S0022-1694(97)00027-9.

    Article  CAS  Google Scholar 

  • Reis, A., Sousa, A., Silva, E., & Fonseca, E. (2005). Application of geostatistical methods to arsenic data from soil samples of the Cova dos Mouros mine (Vila Verde–Portugal). Journal of Environment Geochemical Health, 27, 259–270. doi:10.1007/s10653-004-5554-y.

    Article  CAS  Google Scholar 

  • Rivest, M., Marcotte, D., & Pasquier, P. (2008). Hydraulic head field estimation using kriging with an external drift: A way to consider conceptual model information. Journal of Hydrology (Amsterdam), 361, 349–361. doi:10.1016/j.jhydrol.2008.08.006.

    Article  Google Scholar 

  • Sepaskhah, A. R., Ahmadi, S. H., & Nikbakht-Shahbazi, A. R. (2005). Geostatistical analysis of sorptivity for a soil under tilled and no-tilled conditions. Soil & Tillage Research, 83, 237–245. doi:10.1016/j.still.2004.07.019.

    Article  Google Scholar 

  • Shahrokhnia, M. B., Sepaskhah, A. R., & Javan, M. (2004). Estimation of hydraulic parameters for karoon river by cokriging and residual kriging. Journal of Science & Technology. Transaction B, 28(B1), 153–163.

    Google Scholar 

  • Sharda, V. N., Kurothe, R. S., Sena, D. R., Pande, V. C., & Tiwari, S. P. (2006). Estimation of groundwater recharge from water storage structures in a semi-arid climate of India. Journal of Hydrology (Amsterdam), 329, 224–243. doi:10.1016/j.jhydrol.2006.02.015.

    Article  Google Scholar 

  • Shoji, T., & Kitaura, H. (2004). Statistical and geostatistical analysis of rainfall in central Japan. Journal of Computers and Geosciences, 32(8), 1007–1024. doi:10.1016/j.cageo.2004.12.012.

    Article  Google Scholar 

  • Sivapalan, M., Beven, K. J., & Wood, E. F. (1987). On hydrologic similarity 2: A scaled model of storm runoff prediction. Water Resources Research, 23(12), 2266–2278. doi:10.1029/WR023i012p02266.

    Article  Google Scholar 

  • Takara, K., & Oka, A. (1992). Regionalization of probable rainfall using regression analysis and kriging. Journal of Structural Mechanics of Earthquake Engineering, 456(II-21), 1–10.

    Google Scholar 

  • Volpi, G., & Gambolati, G. (1978). On the use of a main trend for the kriging technique in hydrology. Water Resources, 1(6), 345–349. doi:10.1016/0309-1708(78)90016-7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazda Kompani-Zare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikroo, L., Kompani-Zare, M., Sepaskhah, A.R. et al. Groundwater depth and elevation interpolation by kriging methods in Mohr Basin of Fars province in Iran. Environ Monit Assess 166, 387–407 (2010). https://doi.org/10.1007/s10661-009-1010-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1010-x

Keywords

Navigation