Skip to main content
Log in

Mixing ratios of carbonyls and BTEX in ambient air of Kolkata, India and their associated health risk

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mixing ratios of 15 carbonyls and BTEX (benzene, toluene, ethyl benzene, xylenes) were measured for the first time in ambient air of Kolkata, India at three sites from March to June 2006 and their photochemical reactivity was evaluated. Day and nighttime samples were collected on weekly basis. Formaldehyde was the most abundant carbonyl (mean concentration ranging between 14.07 μg m−3 to 26.12 μg m−3 over the three sites) followed by acetaldehyde (7.60–18.67 μg m−3) and acetone (4.43–10.34 μg m−3). Among the high molecular weight aldehydes, nonanal showed the highest concentration. Among the mono-aromatic VOCs, mean concentration of toluene (27.65–103.31 μg m−3) was maximum, closely followed by benzene (24.97–79.18 μg m−3). Mean formaldehyde to acetaldehyde (1.4) and acetaldehyde to propanal ratios (5.0) were typical of urban air. Based on their photochemical reactivity towards OH· radical, the concentrations of the VOCs were scaled to formaldehyde equivalent, which showed that the high molecular weight carbonyls and xylenes contribute significantly to the total OH-reactive mass of the VOCs. Due to the toxic effect of the VOCs studied, an assessment for both cancer risk and non-cancer hazard due to exposure to the population were calculated. Integrated life time cancer risk (ILTCR) due to four carcinogens (benzene, ethyl benzene, formaldehyde and acetaldehyde) and non-cancer hazard index for the VOCs at their prevailing level were estimated to be 1.42E−04 and 5.6 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  • Altshuller, A. P., Cohen, I. R., Sleva, S. F., & Kopczynski, S. L. (1962). Air pollution: Photooxidation of aromatic hydrocarbons. Science, 138, 442–443.

    Article  CAS  Google Scholar 

  • Anderson, L. G., Lanning, J. A., Barrell, R., Miyagishima, J., Jones, R. H., & Wolfe, P. (1996). Sources and sinks of formaldehyde and acetaldehyde: an analysis of Denver’s ambient concentration data. Atmospheric Environment, 30, 2113–2123.

    Article  CAS  Google Scholar 

  • Atkinson, R. (2000). Atmospheric chemistry of VOCs and NOx. Atmospheric Environment, 34, 2063–2101.

    Article  CAS  Google Scholar 

  • Báez, A. P., Belmont, R., & Padilla, H. (1995). Measurements of formaldehyde and acetaldehyde in the atmosphere of Mexico City. Environmental Pollution, 89, 163–167.

    Article  Google Scholar 

  • Bakeas, E. B., Argyris, D. I., & Siskos, P. A. (2003). Carbonyl compounds in the urban environment of Athens, Greece. Chemosphere, 52, 805–813.

    Article  CAS  Google Scholar 

  • Bravo, H., Sosa, R., Sanchez, P., Bueno, E., & Gonzalez, L. (2002). Concentrations of benzene and toluene in the atmosphere of the southwestern area at the Mexico City Metropolitan Zone. Atmospheric Environment, 36, 3843–3849.

    Article  CAS  Google Scholar 

  • Cerón, R. M., Cerón, J. G., & Muriel, M. (2007). Diurnal and seasonal trends in carbonyl levels in a semi-urban coastal site in the Gulf of Campeche, Mexico. Atmospheric Environment, 41, 63–71.

    Article  CAS  Google Scholar 

  • Correa, S., Martins, E., & Arbilla, G. (2003). Fomaldehyde and acetaldehyde in a high traffic street of Rio de Janeiro, Brazil. Atmospheric Environment, 37, 23–29.

    Article  CAS  Google Scholar 

  • Crump, K. S. (1994). Risk of benzene-induced leukaemia: A sensitivity analysis of the pliofilm cohort with additional follow-up and new exposure estimates. Journal of toxicology and environmental health, 42, 219–242.

    Article  CAS  Google Scholar 

  • Darnall, K. R., Lloyd, A. C., Winer, A. M., & Pitts Jr., J. N. (1971). Reactivity scale for atmospheric hydrocarbons based on reaction with hydroxyl radical. Environmental Science & Technology, 5, 1009–1016.

    Article  Google Scholar 

  • DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., et al. (1992). Chemical kinetics and photochemical data for the use of stratospheric modelling: Evaluation number 10. Pasadena, CA: JPL Publication 92-20, Jet Propulsion Labs.

    Google Scholar 

  • Feng, Y., Wen, S., Chen, Y., Wang, X., Lu¨, H., Bi, X., et al. (2005). Ambient levels of carbonyl compounds and their sources in Guangzhou, China. Atmospheric Environment, 39, 1789–1800.

    Article  CAS  Google Scholar 

  • Finlayson-Pitts, B. J., & Pitts, J. N. J. (2000). Chemistry of the upper and lower atmosphere. San Diego: Academic.

    Google Scholar 

  • Grosjean, D. (1982). Formaldehyde and other carbonyls in Los Angeles ambient air. Environmental Science & Technology, 16, 254–62.

    Article  CAS  Google Scholar 

  • Grosjean, E., & Grosjean, D. (1998). Formation of ozone in urban air by photochemical oxidation of hydrocarbons: Captive air experiments in Porto Alegre, RS. Journalof the Brazilian Chemical Society, 9, 131–143.

    CAS  Google Scholar 

  • Hell’en, H., Hakola, H., Reissell, A., & Ruuskanen, T. M. (2004). Carbonyl compounds in boreal coniferous forest air in Hyytiälä, Southern Finland. Atmospheric Chemistry and Physics, 4, 1771–1780.

    Article  CAS  Google Scholar 

  • Ho, K. F., Lee, S. C., Louie, K. K., & Zou, S. C. (2002). Seasonal variation of carbonyl compound concentrations in urban area of Hong Kong: Asia. Atmospheric Environment, 36, 1259–1265.

    Article  CAS  Google Scholar 

  • Ilgen, E., Karfich, N., Levsen, K., & Angerer, J. (2001). Aromatic hydrocarbons in the atmospheric environment: Part I. Indoor Versus outdoor sources, the influence of traffic. Atmospheric Environment, 35, 1235–1252.

    Article  CAS  Google Scholar 

  • Jacobs, M. B., & Hochheiser, S. (1958). Continuous sampling and ultra-micro determination of nitrogen dioxide in air. Analytical Chemistry, 30, 426.

    Article  CAS  Google Scholar 

  • Kawamura, K., Steinberg, S., & Kaplan, I. R. (2000). Homologous series of C1–C10 monocarboxylic acids and C1–C6 carbonyls in Los Angeles air and motor vehicle exhausts. Atmospheric Environment, 34, 4175.

    Article  CAS  Google Scholar 

  • Khare, P., Satsangi, G. S., Kumar, N., Kumari, K. M., & Srivastava, S. S. (1997). HCHO, HCOOH and CH3COOH in air and rain water at a rural tropical site in north central India. Atmospheric Environment, 31, 3867–3875.

    Article  CAS  Google Scholar 

  • Lai, C. H., & Chen, K. S. (2004). Characteristics of C2–C15 hydrocarbons in the air of urban Kaohsiung, Taiwan. Atmospheric Environment, 38, 1997–2011.

    Article  CAS  Google Scholar 

  • MPTT. (2001). Master plan for traffic and transportation in Calcutta Metropolitan area 2001–2025. Kolkata Metropolitan Development Authority.

  • MohanRao, A. M., Pandit, G. C., Sain, P., Sharma, S., Krishnamoorthy, T. M., & Nambi, K. S. V. (1996). Non-methane hydrocarbons in industrial locations of Bombay. Atmospheric Environment, 31, 1077–1085.

    Article  Google Scholar 

  • Montero, L., Vasconcellos, P. C., Souza, S. R., Pires, M. A. F., Sanchez-ccoyllono, O. R., Andrade, M. F., et al. (2001). Measurements of atmospheric carboxylic acids and carbonyl compounds in Saõ Paulo City, Brazil. Environmental Science & Technology, 35, 3071–3081.

    Article  CAS  Google Scholar 

  • Moussa, S. G., El-Fadel, M., & Saliba, N. A. (2006). Seasonal, diurnal and nocturnal behavoiurs of lower carbonyl compounds in the urban environment of Beirut, Lebanon. Atmospheric Environment, 40, 2459–2468.

    Article  CAS  Google Scholar 

  • Nguyen, H. T., Takenaka, N., Bandow, H., Maeda, Y., Oliva, S., Botelho, M., et al. (2001). Atmospheric alcohols and aldehydes concentrations measured in Osaka, Japan and in Sao Paulo, Brazil. Atmospheric Environment, 35, 3075–3083.

    Article  CAS  Google Scholar 

  • Pang, X., & Mu, Y. (2006). Seasonal and diurnal variations of carbonyl compounds in Beijing ambient air. Atmospheric Environment, 40, 6313–6320.

    Article  CAS  Google Scholar 

  • Possanzini, M., Di Palo, V., & Cecinato, A. (2002). Sources and photodecomposition of formaldehyde and acetaldehyde in Rome ambient air. Atmospheric Environment, 36, 3195–3201.

    Article  CAS  Google Scholar 

  • Possanzini, M., Di Palo, V., Preticca, M., Fratarcangeli, R., & Brocco, D. (1996). Measurements of lower carbonyls in Rome ambient air. Atmospheric Environment, 30, 3757–3764.

    Article  CAS  Google Scholar 

  • Sin, D., Wong, Y. C., & Louie, P. K. (2001). Trends of ambient carbonyl compounds in the urban environment of Hong Kong. Atmospheric Environment, 35, 5961–5969.

    Article  CAS  Google Scholar 

  • Som, D., Dutta, C., Chatterjee, A., Mallick, D., Jana, T. K., & Sen, S. (2007). Studies on commuters’ exposure to BTEX in passenger cars in Kolkata, India. Science of the Total Environment, 372, 426–432.

    Article  CAS  Google Scholar 

  • Srivastava, A., Joseph, A. E., Patil, S., More, A., Dixit, R. C., & Prakash, M. (2005). Air toxics in ambient air of Delhi. Atmospheric Environment, 39, 59–71.

    Article  CAS  Google Scholar 

  • Uchiyama, S., Matsushima, E., Aoyagi, S., & Ando, M. (2004). Simultaneous determination of C1–C4 carboxylic acids and aldehydes using 2, 4-dinitrophenylhydrazine-impregnated silica gel and high-performance liquid chromatography. Analytical Chemistry, 76, 5849–5854.

    Article  CAS  Google Scholar 

  • Uebori, M., & Imamura, K. (2004). Analysis of aliphatic and aromatic carbonyl compounds in ambient air by LC/MS/MS. Analytical Science, 20, 1459.

    Article  CAS  Google Scholar 

  • USEPA. (1993). Code of Federal Regulations. Title, Part 58.Ambient air quality surveillance. Final Rule Federal Register, vol. 58(28), 12 February

    Google Scholar 

  • USEPA. (1997). Air risk assessment workplan. United States Environmental Protection Agency Regions 3, 4, and 5 Ohio Environmental Protection Agency Division of Air Pollution Control Kentucky Department of Environmental Protection.

  • Viskari, E., Vartiainen, M., & Pasanen, P. (2000). Seasonal and diurnal variation in formaldehyde and acetaldehyde concentrations along a highway in Eastern Finland. Atmospheric Environment, 34, 917–923.

    Article  CAS  Google Scholar 

  • Wang, X., Sheng, G., Fu, J., Chan, C., Lee, S. C., Chan, L. Y., et al. (2002). Urban roadside aromatic hydrocarbons in three cities of the Pearl River Delta, People’s Republic of China. Atmospheric Environment, 36, 5141–5148.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, C., Som, D., Chatterjee, A. et al. Mixing ratios of carbonyls and BTEX in ambient air of Kolkata, India and their associated health risk. Environ Monit Assess 148, 97–107 (2009). https://doi.org/10.1007/s10661-007-0142-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-0142-0

Keywords

Navigation