Skip to main content
Log in

Wrinkling of a Stretched Thin Sheet

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

An Erratum to this article was published on 09 April 2011

Abstract

When a thin rectangular sheet is clamped along two opposing edges and stretched, its inability to accommodate the Poisson contraction near the clamps may lead to the formation of wrinkles with crests and troughs parallel to the axis of stretch. A variational model for this phenomenon is proposed. The relevant energy functional includes bending and membranal contributions, the latter depending explicitly on the applied stretch. Motivated by work of Cerda, Ravi-Chandar, and Mahadevan, the functional is minimized subject to a global kinematical constraint on the area of the mid-surface of the sheet. Analysis of a boundary-value problem for the ensuing Euler–Lagrange equation shows that wrinkled solutions exist only above a threshold of the applied stretch. A sequence of critical values of the applied stretch, each element of which corresponds to a discrete number of wrinkles, is determined. Whenever the applied stretch is sufficiently large to induce more than three wrinkles, previously proposed scaling relations for the wrinkle wavelength and, modulo a multiplicative factor that depends on the Poisson ratio of the sheet and the applied stretch and arises from the more general and weaker nature of geometric constraint under consideration, root-mean-square amplitude are confirmed. In contrast to the scaling relations for the wrinkle wavelength and amplitude, the applied stretch required to induce any number of wrinkles depends on the in-plane aspect ratio of the sheet. When the sheet is significantly longer than it is wide, the critical stretch scales with the fourth power of the length-to-width ratio but, when the sheet is significantly wider than it is long, the critical stretch scales with the square of that same ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blandino, J.D., Johnson, J., Dharamsi, U.K.: Corner wrinkling of a square membrane due to symmetric mechanical loads. J. Spacecr. Rockets 39, 717–724 (2002)

    Article  ADS  Google Scholar 

  2. Jenkins, C.H., Kalanovic, V.D., Padmanabhan, K., Faisal, S.M.: Intelligent shape control for precision membrane antennae and reflectors in space. Smart Mater. Struct. 8, 857–867 (1999)

    Article  ADS  Google Scholar 

  3. Sakamoto, H., Park, K.C., Miyazaki, Y.: Evaluation of membrane structure designs using boundary web cables for uniform tensioning. Acta Astronaut. 60, 846–857 (2007)

    Article  ADS  Google Scholar 

  4. Hudson, D.A., Renshaw, A.: An algorithm for the release of burn contractures of the extremities. Burns 32, 663–668 (2006)

    Article  Google Scholar 

  5. Lott-Crumpler, D.A., Chaudhry, H.R.: Optimal patterns for suturing wounds of complex shapes to foster healing. J. Biomech. 34, 51–58 (2001)

    Article  Google Scholar 

  6. Georgeu, G.A., Ross, D.: Wounds and scars. Surgery 20, 139–141 (2002)

    Google Scholar 

  7. Cerda, E.: Mechanics of scars. J. Biomech. 38, 1598–1603 (2005)

    Article  Google Scholar 

  8. Hofer, S.O.P., Mureau, M.A.M.: Improving outcomes in aesthetic facial reconstruction. Clin. Plast. Surg. 36, 345–354 (2009)

    Article  Google Scholar 

  9. Ueda, K., Hara, M., Okada, M., Kurokawa, N., Otani, K., Nuri, T.: Lambda incision for effective tissue expansion. J. Plast. Reconstr. Aesthet. Surg. doi:10.1016/j.bjps.2009.09.015 (2009)

    Google Scholar 

  10. Stafford, C.M., Harrison, C., Beers, K.L., Karim, A., Amis, E.J., Vanlandingham, M.R., Kim, H.-C., Volksen, W., Miller, R.D., Simonyi, E.: A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 3, 545–550 (2004)

    Article  ADS  Google Scholar 

  11. Chung, J.Y., Chastek, T.Q., Fasolka, M.J., Ro, H.W., Stafford, C.M.: Quantifying residual stress in nanoscale thin polymer films via surface wrinkling. ACS Nano 3, 844–852 (2009)

    Article  Google Scholar 

  12. Burton, K., Taylor, D.L.: Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385, 450–454 (1997)

    Article  ADS  Google Scholar 

  13. Harris, A.K., Wild, P., Stopak, D.: Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208, 177–179 (1980)

    Article  ADS  Google Scholar 

  14. Kolaric, B., Vandeparre, H., Desprez, S., Vallee, R.A.L., Damman, P.: In situ tuning the optical properties of a cavity by wrinkling. Appl. Phys. Lett. 96, 043119 (2010)

    Article  ADS  Google Scholar 

  15. Ohzono, T., Monobe, H., Shiokawa, K., Fujiwara, M., Shimizu, Y.: Shaping liquid on a micrometre scale using microwrinkles as deformable open channel capillaries. Soft Matter 5, 4658–4664 (2009)

    Article  ADS  Google Scholar 

  16. Wagner, H.: Ebene Blechwandträger mit sehr dünnen Stegblechen. ZFM, Z. Flugtech. Mot.luftschiffahrt 20, 200–207, 227–233, 256–262, 279–284, 306–314 (1929)

    Google Scholar 

  17. Wagner, H., Ballerstedt, W.: Über Zugfelder in ursprünglich gekrümmten, dünnen Blechen bei Beanspruchung durch Schubkräfte. Luftfahrtforschung 12, 70–74 (1935)

    Google Scholar 

  18. Wagner, H.: Ëiniges über schalenförmige Flugzeug-Bauteile. Luftfahrtforschung 13, 281–292 (1936)

    Google Scholar 

  19. Kondo, K.: The general solution of the flat tension field. J. Soc. Aeronaut. Sci. Nippon 5, 887–901 (1938)

    Google Scholar 

  20. Reissner, E.: On tension field theory. In: Proceedings of the 5th International Congress for Applied Mechanics, pp. 88–92 (1938)

    Google Scholar 

  21. Mansfield, E.H.: Load transfer via a wrinkled membrane. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 316, 269–289 (1970)

    Article  ADS  Google Scholar 

  22. Danielson, D.A., Natarajan, S.: Tension field theory and the stress in stretched skin. J. Biomech. 8, 135–142 (1975)

    Article  Google Scholar 

  23. Wu, C.H.: Nonlinear wrinkling of nonlinear membranes of revolution. J. Appl. Mech. 45, 533–538 (1978)

    Article  ADS  MATH  Google Scholar 

  24. Zak, M.: Statics of wrinkling films. J. Elast. 12, 51–63 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pipkin, A.C.: Continuously distributed wrinkles in fabrics. Arch. Ration. Mech. Anal. 95, 93–115 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Steigmann, D.J., Pipkin, A.C.: Wrinkling of pressurized membranes. J. Appl. Mech. 56, 624–628 (1989)

    Article  ADS  MATH  Google Scholar 

  27. Steigmann, D.J.: Tension-field theory. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 429, 141–173 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Hilgers, M.G., Pipkin, A.C.: Elastic sheets with bending stiffness. Q. J. Mech. Appl. Math. 45, 57–75 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Steigmann, D.J.: Two-dimensional models for the combined bending and stretching of plates and shells based on three-dimensional linear elasticity. Int. J. Eng. Sci. 46, 654–676 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cerda, E., Ravi-Chandar, K., Mahadevan, L.: Thin films: Wrinkling of an elastic sheet under tension. Nature 419, 579–580 (2002)

    Article  ADS  Google Scholar 

  31. Cerda, E., Mahadevan, L.: Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 1–4 (2003)

    Article  Google Scholar 

  32. Coman, C.: On the applicability of tension field theory to a wrinkling instability problem. Acta Mech. 190, 57–72 (2007)

    Article  MATH  Google Scholar 

  33. Wong, Y.W., Pellegrino, S.: Wrinkled membranes II: Analytical models. J. Mech. Mater. Struct. 1, 27–61 (2006)

    Article  Google Scholar 

  34. Wong, Y.W., Pellegrino, S.: Wrinkled membranes I: Experiments. J. Mech. Mater. Struct. 1, 3–25 (2006)

    Article  Google Scholar 

  35. Wong, Y.W., Pellegrino, S.: Wrinkled membranes III: Numerical simulations. J. Mech. Mater. Struct. 1, 63–95 (2006)

    Article  Google Scholar 

  36. Balmforth, N.J., Craster, R.V., Slim, A.C.: On the buckling of elastic plates. Q. J. Mech. Appl. Math. 61, 267–289 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Landau, L.D., Lifschitz, E.M.: Theory of Elasticity. Pergamon, New York (1970)

    Google Scholar 

  38. Bazant, Z.P., Cedolin, L.: Stability of Structures Elastic, Inelastic, Fracture, and Damage Theories. Dover, New York (2003)

    Google Scholar 

  39. Podio-Guidugli, P.: A primer in elasticity. J. Elast. 58, 1–104 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pipkin, A.C.: Constraints in linearly elastic materials. J. Elast. 6, 179–193 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hetényi, M.: Beams on Elastic Foundation. University of Michigan Press, Ann Arbor (1946)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliot Fried.

Additional information

Dedicated to the memory of Donald E. Carlson, whose insight and clarity of thought were exceeded only by his modesty and generosity.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10659-011-9340-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puntel, E., Deseri, L. & Fried, E. Wrinkling of a Stretched Thin Sheet. J Elast 105, 137–170 (2011). https://doi.org/10.1007/s10659-010-9290-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-010-9290-5

Keywords

Mathematics Subject Classification (2000)

Navigation