Skip to main content
Log in

A loop-mediated isothermal amplification-based method for confirmation of Guignardia citricarpa in citrus black spot lesions

  • Short Communications
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Guignardia citricarpa Kiely (anamorph Phyllosticta citricarpa Van der Aa), the causal agent of citrus black spot disease, is subject to phytosanitary restrictions in the EU and USA, such that consignments of citrus are rejected at import if citrus black spot is identified on inspection. Due to the variability of black spot symptoms, positive identification solely on the basis of visual inspection is difficult, especially when lesions lack pycnidia (fruiting bodies of the anamorph Phyllosticta citricarpa). As an aid to visual inspection of symptoms, we have developed a method for detection of G. citricarpa using loop-mediated isothermal amplification (LAMP) which can be used to confirm the presence of G. citricarpa in black spot lesions, including those lacking pycnidia. The LAMP assay can be used to test crude extracts prepared directly from lesions on fruit, and the entire test can be completed in less than 40 min, making it faster than previously described PCR-based methods for detection of G. citricarpa. The method is sufficiently simple to allow deployment of the test in the field, for example in the course of import inspections. Recent years have seen the description of a number of newly recognised species in the genus Phyllosticta that are associated with citrus. As new species emerge, and the taxonomy of the genus is resolved, it will be important to periodically re-evaluate the performance of DNA-based methods for detection of G. citricarpa, including the LAMP assay described here, such that the accuracy of diagnosis can be assured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Baayen, R. P., Bonants, P. J. M., Verkley, G., Carroll, G. C., van der Aa, H. A., de Weerdt, M., van Brouwershaven, I. R., Schutte, G. C., Maccheroni, W., Jr., Glienke de Blanco, C., & Azevedo, J. L. (2002). Nonpathogenic isolates of the citrus black spot fungus, Guignardia citricarpa, identified as a common endophyte of woody plants, G. mangiferae (Phyllosticta capitalensis). Phytopathology, 92, 464–477.

    Article  PubMed  CAS  Google Scholar 

  • Bonants, P. J. M., Carroll, G. C., de Weerdt, M., van Brouwershaven, I. R., & Baayen, R. P. (2003). Development and validation of a fast PCR-based detection method for pathogenic isolates of the citrus black spot fungus, Guignardia citricarpa. European Journal of Plant Pathology, 109, 503–513.

    Article  CAS  Google Scholar 

  • EPPO. (2009). PM 7/17(2): Guignardia citricarpa. EPPO Bulletin, 39, 318–327.

    Article  Google Scholar 

  • Glienke, C., Pereira, O. L., Stringari, D., Fabris, J., Kava-Cordeiro, V., Galli-Terasawa, L., Cunnington, J., Shivas, R. G., Groenewald, J. Z., & Crous, P. W. (2011). Endophytic and pathogenic Phyllosticta species, with reference to those associated with Citrus Black Spot. Persoonia, 26, 47–56.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko, H., Kawana, T., Fukushima, E., & Suzutani, T. (2007). Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. Journal of Biochemical and Biophysical Methods, 70, 499–501.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, L., Sanders, G. M., Jacobs, R., & Korsten, L. (2006). A one-day sensitive method to detect and distinguish between the citrus black spot pathogen Guignardia citricarpa and the endophyte Guignardia mangiferae. Plant Disease, 90, 97–101.

    Article  CAS  Google Scholar 

  • Nagamine, K., Hase, T., & Notomi, T. (2002). Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes, 16, 223–229.

    Article  PubMed  CAS  Google Scholar 

  • Nagamine, K., Watanabe, K., Ohtsuka, K., Hase, T., & Notomi, T. (2001). Loop-mediated isothermal amplification reaction using a nondenatured template. Clinical Chemistry, 47, 1742–1743.

    PubMed  CAS  Google Scholar 

  • Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28, e63.

    Article  PubMed  CAS  Google Scholar 

  • Peres, N. A., Harakava, R., Carroll, G. C., Adaskaveg, J. E., & Timmer, L. W. (2007). Comparison of molecular procedures for detection and identification of Guignardia citricarpa and G. mangiferae. Plant Disease, 91, 525–531.

    Article  CAS  Google Scholar 

  • Suarez, M. B., Walsh, K., Boonham, N., O’Neill, T., Pearson, S., & Barker, I. (2005). Development of real-time PCR (TaqMan) assays for the detection and quantification of Botrytis cinerea in planta. Plant Physiology and Biochemistry, 43, 890–899.

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson, J. A., Boonham, N., Hughes, K. J. D., Griffin, R. L., & Barker, I. (2005). On-site DNA extraction and real-time PCR for detection of Phytophthora ramorum in the field. Applied and Environmental Microbiology, 71, 6702–6710.

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson, J. A., Dickinson, M. J., & Boonham, N. (2010). Rapid detection of Phytophthora ramorum and P. kernoviae by two-minute DNA extraction followed by isothermal amplification and amplicon detection by generic lateral flow device. Phytopathology, 100, 143–149.

    Article  PubMed  CAS  Google Scholar 

  • van Gent-Pelzer, M. P. E., van Brouwershaven, I. R., Kox, L. F. F., & Bonants, P. J. M. (2007). A TaqMan PCR method for routine diagnosis of the quarantine fungus Guignardia citricarpa on citrus fruit. Journal of Phytopathology, 155, 357–363.

    Article  Google Scholar 

  • Wang, X., Chen, G., Huang, F., Zhang, J., Hyde, K. D., & Li, H. (2012). Phyllosticta species associated with citrus diseases in China. Fungal Diversity, 52, 209–224.

    Article  Google Scholar 

  • Weller, S. A., Elphinstone, J. G., Smith, N. C., Boonham, N., & Stead, D. E. (2000). Detection of Ralstonia solanacearum strains with a quantitative, multiplex, real time, fluorogenic PCR (TaqMan) assay. Applied and Environmental Microbiology, 66, 2853–2858.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, E. K., Hara, C. A., Frank, J., Deotte, J., Hall, S. B., Benett, W., Spadaccini, C., & Beer, N. R. (2011). Under-three minute PCR: probing the limits of fast amplification. Analyst, 136, 3707–3712.

    Article  PubMed  CAS  Google Scholar 

  • Wikee, S., Udayanga, D., Crous, P. W., Chukeatirote, E., McKenzie, E. H. C., Bahkali, A. H., Dai, D., & Hyde, K. D. (2011). Phyllosticta—an overview of current status of species recognition. Fungal Diversity, 51, 43–61.

    Article  Google Scholar 

  • Wulandari, N. F., To-anun, C., Hyde, K. D., Duong, L. M., de Gruyter, J., Meffert, J. P., Groenewald, J. Z., & Crous, P. W. (2009). Phyllosticta citriasiana sp. nov., the cause of Citrus tan spot of Citrus maxima in Asia. Fungal Diversity, 34, 23–39.

    Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by Defra. The authors would like to thank Jim Beckley of Fera Plant Health and Seeds Inspectorate for providing helpful feedback during development of these methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Tomlinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomlinson, J.A., Ostoja-Starzewska, S., Webb, K. et al. A loop-mediated isothermal amplification-based method for confirmation of Guignardia citricarpa in citrus black spot lesions. Eur J Plant Pathol 136, 217–224 (2013). https://doi.org/10.1007/s10658-013-0168-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0168-9

Keywords

Navigation