Skip to main content
Log in

What can we learn from clubroots: alterations in host roots and hormone homeostasis caused by Plasmodiophora brassicae

  • Full Research Paper
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The clubroot disease of cruciferous crops is caused by an obligate biotrophic protist, Plasmodiophora brassicae. The disease is characterized by the development of large root galls accompanied by changes in source-sink relations and the hormonal balance within the plant. Since the disease is difficult to control, it is of high economic interest to understand the events leading to gall formation. In this review we will give an overview on the current knowledge of changes brought about in the host root by this obligate biotrophic pathogen. Emphasis will be on the regulation of changes in plant hormone homeostasis, mainly auxins and cytokinins; the possible role of secondary metabolites, especially indole glucosinolates, in gall formation and auxin homeostasis will be discussed. Also, results from mutant analysis and microarrays using the model plant Arabidopsis thaliana are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adie, B., Chico, J. M., Rubio-Somoza, I., & Solano, R. (2007). Modulation of plant defenses by ethylene. Journal of Plant Growth Regulation, 26, 160–177.

    Article  CAS  Google Scholar 

  • Aist, J. R., & Williams, P. H. (1971). The cytology and kinetics of cabbage root hair penetration by Plasmodiophora brassicae. Canadian Journal of Botany, 49, 2023–2034.

    Google Scholar 

  • Alix, K., Lariagon, C., Delourme, R., & Manzanares-Dauleux, M. J. (2007). Exploiting natural genetic diversity and mutant resources of Arabidopsis thaliana to study the A. thaliana-Plasmodiophora brassicae interaction. Plant Breeding, 126, 218–221.

    Article  Google Scholar 

  • Ando, S., Asano, T., Tsushima, S., Kamachi, S., Hagio, T., & Tabei, Y. (2005). Changes in gene expression of putative isopentenyltransferase during clubroot development of Chinese cabbage (Brassica rapa L.). Physiological and Molecular Plant Patholology, 67, 59–67.

    Article  CAS  Google Scholar 

  • Ando, S., Tsushima, S., Tagiri, A., Kamachi, S., Konagaya, K.-I., & Hagio, T., et al. (2006a). Increase in BrAO1 gene expression and aldehyde oxidase activity during clubroot development in Chinese cabbage (Brassica rapa L.). Molecular Plant Patholology, 7, 223–234.

    Article  CAS  Google Scholar 

  • Ando, S., Yamada, T., Asano, T., Kamachi, S., Tsushima, S., & Hagio, T., et al. (2006b). Molecular cloning of PbSTKL1 gene from Plasmodiophora brassicae expressed during clubroot development. Journal of Phytopathology, 154, 185–189.

    Article  CAS  Google Scholar 

  • Archibald, J. M., & Keeling, P. J. (2004). Actin and ubiquitin protein sequences support a Cercozoan/Foraminiferan ancestry for the Plasmodiophorid plant pathogens. Journal of Eukaryotic Microbiology, 51, 113–118.

    Article  PubMed  CAS  Google Scholar 

  • Arnold, D. L., Blakesley, D., & Clarkson, J. M. (1996). Evidence for the growth of Plasmodiophora brassicae in vitro. Mycological Research, 100, 535–540.

    CAS  Google Scholar 

  • Asano, T., & Kageyama, K. (2006). Growth and movement of secondary plasmodia of Plasmodiophora brassicae in turnip suspension-culture cells. Plant Pathology, 5, 145–151.

    Article  Google Scholar 

  • Asano, T., Kodama, A., & Kageyama, K. (2006). Susceptibility of hairy root lines of Brassica species to Plasmodiophora brassicae and in an in vitro subculture system. Journal of General Plant Patholology, 72, 85–91.

    Article  Google Scholar 

  • Ayers, G. W. (1944). Studies on the life history of the club root organism Plasmodiophora brassicae. Canadian Journal of Research, 22, 143–149.

    Google Scholar 

  • Bass, D., Moreira, D., Lopez-Garcia, P., Polet, S., Chao, E. E., & von der Heyden, S., et al. (2005). Polyubiquitin insertions and the phylogeny of Cercozoa and Rhizaria. Protist, 156, 149–161.

    Article  PubMed  CAS  Google Scholar 

  • Besseau, S., Hoffmann, L., Geoffroy, P., Lapierr, C., Pollet, B., & Legrand, M. (2007). Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affect auxin transport and plant growth. The Plant Cell, 19, 148–162.

    Article  PubMed  CAS  Google Scholar 

  • Braselton, J. P. (1995). Current status of the Plasmodiophorids. Critical Reviews of Microbiology, 21, 263–275.

    Article  CAS  Google Scholar 

  • Brodmann, D., Schuller, A., Ludwig-Müller, J., Aeschbacher, R. A., Wiemken, A., & Boller, T., et al. (2002). Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae. Molecular Plant-Microbe Interaction, 15, 693–700.

    Article  CAS  Google Scholar 

  • Buczacki, S. T. (1983). Plasmodiophora. An inter-relationship between biological and practical problems. In S. T. Buczacki (Ed.) Zoosporic plant pathogens pp. 161–191. Academic: London.

    Google Scholar 

  • Buczacki, S. T., & Ockendon, J. G. (1979). Preliminary observations on variation in susceptibility to clubroot among collections of some wild crucifers. Annals of applied Biology, 92, 113–118.

    Article  Google Scholar 

  • Bulman, R. S., Kühn, S. F., Marschall, J. W., & Schnepf, E. (2001). A phylogenetic analysis of the SSR rRNA from members of the Plasmodiophorida and Phagomyxida. Protist, 152, 43–51.

    Article  PubMed  CAS  Google Scholar 

  • Bulman, S., Siemens, J., Ridgeway, H., Eady, C., & Conner, A. (2006). Identification of genes from the obligate intracellular plant pathogen, Plasmodiophora brassicae. FEMS Microbiological Letters, 264, 198–204.

    Article  CAS  Google Scholar 

  • Butcher, D. N., El-Tigani, S., & Ingram, D. S. (1974). The role of indole glucosinolates in the clubroot disease of the Cruciferae. Physiological Plant Pathology, 4, 127–141.

    CAS  Google Scholar 

  • Butcher, D. N., Searle, L. M., & Mousdale, D. M. A. (1976). The role of glucosinolates in the club root disease of the cruciferae. Mededeligen Faculteit Landbouwwetenschappen Rijksuniersiteit Gent, 41/2, 525–532.

    Google Scholar 

  • Butcher, D. N., Chamberlain, K., Rausch, T., & Searle, L. M. (1984). Changes in indole metabolism during the development of clubroot symptoms in Brassicas. In: Biochemical Aspects of Synthetic and Naturally Occurring Plant Growth Regulators. British Plant Growth Regulator Group, Monograph, 11, 91–101.

    CAS  Google Scholar 

  • Cavalier-Smith, T., & Chao, E. E. (1997). Sarcomonad ribosomal RNA sequences, rhizopod phylogeny, and the origin of euglyphid amoebae. Archiv für Protistenkunde, 147, 227–236.

    Google Scholar 

  • Cavalier-Smith, T., & Chao, E. E. (2003). Phylogeny and classification of phylum Cercozoa (Protozoa). Protist, 154, 341–358.

    Article  PubMed  Google Scholar 

  • Chong, C., Chiang, M. S., & Crete, R. (1981). Thiocyanate ion content in relation to clubroot disease severity in cabbages. Horticultural Science, 16, 663–664.

    CAS  Google Scholar 

  • Chong, C., Chiang, M. S., & Crete, R. (1984). Studies in glucosinolates in clubroot resistant selections and susceptible commercial cultivars of cabbages. Euphytica, 34, 65–73.

    Article  Google Scholar 

  • Crisp, P., Crute, I. R., Sutherland, R. A., Angell, S. M., Bloor, K., & Burgess, H., et al. (1989). The exploitation of genetic ressources of Brassica oleracea in breeding for resistance to clubroot Plasmodiophora brassicae. Euphytica, 42, 215–226.

    Google Scholar 

  • Davies, W. J., Kudoyarova, G., & Hartung, W. (2005). Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought. Journal of Plant Growth Regulation, 24, 285–295.

    Article  CAS  Google Scholar 

  • Dekhuijzen, H. M. (1975). The enzymatic isolation of secondary vegetative plasmodia of Plasmodiophora brassicae from callus tissue of Brassica campestris. Physiological Plant Pathology, 6, 187–192.

    Google Scholar 

  • Dekhuijzen, H. M. (1976). The role of growth hormones in club root formation. Mededeligen Faculteit Landbouwwetenschappen Rijksuniersiteit Gent, 41, 517–523.

    CAS  Google Scholar 

  • Dekhuijzen, H. M. (1980). The occurrence of free and bound cytokinins in clubroots and Plasmodiophora brassicae infected turnip tissue cultures. Physiologia Plantarum, 49, 169–176.

    Article  Google Scholar 

  • Dekhuijzen, H. M. (1981). The occurrence of free and bound cytokinins in plasmodia of Plasmodiophora brassicae isolated from tissue cultures of clubroots. Plant Cell Reports, 1, 18–20.

    Article  CAS  Google Scholar 

  • Devos, S., Vissenberg, K., Verbelen, J.-P., & Prinsen, E. (2005). Infection of Chinese cabbage by Plasmodiophora brassicae leads to a stimulation of plant growth: impacts on cell wall metabolism and hormonal balance. New Phytologist, 166, 241–250.

    Article  PubMed  CAS  Google Scholar 

  • Devos, S., Laukens, K., Deckers, P., Van Der Straeten, D., Beeckman, T., & Inze, D., et al. (2006). A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis. Molecular Plant-Microbe Interaction, 19, 1431–1433.

    Article  CAS  Google Scholar 

  • Ehneß, R., & Roitsch, T. (1997). Coordinated induction of extracellular invertase and glucose transporters in Chenopodium rubrum by cytokinins. The Plant Journal, 11, 539–548.

    Article  PubMed  Google Scholar 

  • Evans, J. L., & Scholes, J. D. (1995). How does clubroot alter the regulation of carbon metabolism in its host. Aspects of Applied Biology, 42, 125–132.

    Google Scholar 

  • Fuchs, H., & Sacristan, M. D. (1996). Identification of a gene in Arabidopsis thaliana controlling resistance to clubroot (Plasmodiophora brassicae) and characterization of the resistance response. Molecular Plant-Microbe Interaction, 9, 91–97.

    CAS  Google Scholar 

  • Graveland, R., Dale, P., & Mithen, R. (1992). Gall development in hairy root cultures infected with Plasmodiophora brassicae. Mycological Research, 96, 225–228.

    Google Scholar 

  • Grsic, S., Kirchheim, B., Pieper, K., Fritsch, M., Hilgenberg, W., & Ludwig-Müller, J. (1999). Induction of auxin biosynthetic enzymes by jasmonic acid and in clubroot diseased Chinese cabbage plants. Physiologia Plantarum, 105, 521–531.

    Article  CAS  Google Scholar 

  • Grsic-Rausch, S., Kobelt, P., Siemens, J., Bischoff, M., & Ludwig-Müller, J. (2000). Expression and localization of nitrilase during symptom development of the clubroot disease in Arabidopsis thaliana. Plant Physiology, 122, 369–378.

    Article  PubMed  CAS  Google Scholar 

  • Gusta, L. V., Trischuk, R., & Weiser, C. J. (2005). Plant cold acclimation: The role of abscisic acid. Journal of Plant Growth Regulation, 24, 308–318.

    Article  CAS  Google Scholar 

  • Halkier, B. A., & Gershenzon, J. (2006). Biology and biochemistry of glucosinolates. Annual Review of Plant Biology, 57, 303–333.

    Article  PubMed  CAS  Google Scholar 

  • Haughn, G. W., Davin, L., Giblin, M., & Underhill, E. W. (1991). Biochemical genetics of plant secondary metabolites in Arabidopsis thaliana. The glucosinolates. Plant Physiology, 97, 217–226.

    PubMed  CAS  Google Scholar 

  • Hirai, M. (2006). Genetic analysis of clubroot resistance in Brassica crops. Breeding Science, 56, 223–229.

    Article  Google Scholar 

  • Horn, C., Siemens, J., & Ludwig-Müller, J. (2006). The GH3-gene family of Arabidopsis thaliana and the obligate pathogen Plasmodiophora brassicae. (Paper presented at the 15th Crucifer Genetics Workshop: Brassic 2006, Wageningen, The Netherlands).

  • Hull, A. K., Vij, R., & Celenza, J. L. (2000). Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole 3-acetic acid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 97, 2379–2384.

    Article  PubMed  CAS  Google Scholar 

  • Ingram, D. S., & Tommerup, I. C. (1972). The life history of Plasmodiophora brassicae Woron. Proceedings of the Royal Society B, 180, 103–112.

    Google Scholar 

  • Ito, S., Ichinose, H., Yanagi, C., Tanaka, S., Kameya-Iwaki, M., & Kishi, F. (1999). Identification of an in planta-induced mRNA of Plasmodiophora brassicae. Journal of Phytopathology, 147, 79–82.

    CAS  Google Scholar 

  • Keen, N. T., & Williams, P. H. (1969a). Synthesis and degradation of starch and lipids following infection of cabbage by Plasmodiophora brassicae. Phytopathology, 59, 778–785.

    CAS  Google Scholar 

  • Keen, N. T., & Williams, P. H. (1969b). Translocation of sugars into infected cabbage tissues during club root development. Plant Physiology, 44, 748–754.

    PubMed  CAS  Google Scholar 

  • Kim, J. H., Durrett, T. P., Last, R. L., & Jander, G. (2004). Characterization of the Arabidopsis TU8 glucosinolate mutation, an allele of TERMINAL FLOWER2. Plant Molecular Biology, 54, 671–682.

    Article  PubMed  CAS  Google Scholar 

  • Kobelt, P. (2000). Die Verbreitung von sekundären Plasmodien von Plasmodiophora brassicae (Wor.) im Wurzelgewebe von Arabidopsis thaliana nach immunhistologischer Markierung des plasmodialen Zytoskeletts. Dissertation, Institut für Angewandte Genetik, Freie Universität Berlin, Germany.

  • Kobelt, P., Siemens, J., & Sacristan, M. D. (2000). Histological characterisation of the incompatible interaction between Arabidopsis thaliana and the obligate biotrophic pathogen Plasmodiophora brassicae. Mycological Research, 104, 220–225.

    Article  Google Scholar 

  • Koda, Y. (1992). The role of jasmonic acid and related compounds in the regulation of plant development. International Review of Cytology, 135, 155–199.

    PubMed  CAS  Google Scholar 

  • LeClere, S., Rampey, R. A., & Bartel, B. (2004). IAR4, a gene required for auxin conjugate sensitivity in Arabidopsis, encodes a pyruvate dehydrogenase E1α homolog. Plant Physiology, 135, 989–999.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig-Müller, J. (1999). Plasmodiophora brassicae, the causal agent of clubroot disease: A review on molecular and biochemical events in pathogenesis. Journal of Plant Disease and Plant Protection, 106, 109–127.

    Google Scholar 

  • Ludwig-Müller, J., & Cohen, J. D. (2002). Identification and quantification of three active auxins in different tissues of Tropaeolum majus. Physiologia Plantarum, 115, 320–329.

    Article  PubMed  Google Scholar 

  • Ludwig-Müller, J., Epstein, E., & Hilgenberg, W. (1996). Auxin-conjugate hydrolysis in Chinese cabbage: Characterization of an amidohydrolase and its role during the clubroot disease. Physiologia Planarum, 97, 627–634.

    Article  Google Scholar 

  • Ludwig-Müller, J., Schubert, B., Pieper, K., Ihmig, S., & Hilgenberg, W. (1997). Glucosinolate content in susceptible and tolerant Chinese cabbage varieties during the development of the clubroot disease. Phytochemistry, 44, 407–414.

    Article  Google Scholar 

  • Ludwig-Müller, J., Pieper, K., Ruppel, M., Cohen, J. D., Epstein, E., & Kiddle, G., et al. (1999a). Indole glucosinolate and auxin biosynthesis in Arabidopsis thaliana L. glucosinolate mutants and the development of the clubroot disease. Planta, 208, 409–419.

    Article  PubMed  Google Scholar 

  • Ludwig-Müller, J., Bennett, R. N., Kiddle, G., Ihmig, S., Ruppel, M., & Hilgenberg, W. (1999b). The host range of Plasmodiophora brassicae and its relationship to endogenous glucosinolate content. New Phytologist, 144, 443–458.

    Article  Google Scholar 

  • Ludwig-Müller, J., Siemens, S., Horn, C., & Päsold, S. (2006). Metabolic and hormonal changes during root gall development after infection of Arabidopsis with Plasmodiophora brassica. (Paper presented at the Plant Genetics Conference, Kiel, Germany).

  • MacFarlane, I. (1952). Factors affecting the survival of Plasmodiophora brassicae Wor. in the soil and its assessment by a host test. Annals of Applied Biology, 39, 239–256.

    Article  Google Scholar 

  • Margulis, L., Corliss, J. O., Melkonian, M., & Chapman, D. J. (1989). Handbook of Protoctista. Jones and Partlett Publishers: Boston.

    Google Scholar 

  • Mattusch, P. (1977). Epidemiology of crucifers caused by Plasmodiophora brassicae. In S. T. Buczacki, & P. H. Williams (Eds.) Woronin + 100 international conference on clubroot (pp. 24–28). Madison, WI: University of Wisconsin.

    Google Scholar 

  • Mattusch, P. (1994). Kohlhernieanfälligkeit eines Chinakohlsortiments. Gemüse, 30, 357–359.

    Google Scholar 

  • Mikkelsen, M. D., Hansen, C. H., Wittstock, U., & Halkier, B. A. (2000). Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. Journal of Biological Chemistry, 275, 33712–33717.

    Article  PubMed  CAS  Google Scholar 

  • Mithen, R., & Magrath, R. (1992). A contribution to the life history of Plasmodiophora brassicae: secondary plasmodia development in root galls of Arabidopsis thaliana. Mycological Research, 96, 877–885.

    Google Scholar 

  • Müller, J., Wiemken, A., & Aeschbacher, R. (1999). Trehalose metabolism in sugar sensing and plant development. Plant Science, 147, 37–47.

    Article  Google Scholar 

  • Müller, P., & Hilgenberg, W. (1986). Isomers of zeatin and zeatin riboside in clubroot tissue: Evidence for trans-zeatin biosynthesis by Plasmodiophora brassicae. Physiologia Plantarum, 66, 245–250.

    Article  Google Scholar 

  • Mullin, W. J., Proudfoot, K. G., & Collins, M. J. (1980). Glucosinolate content and clubroot of rutabaga and turnip. Canadian Journal of Plant Science, 60, 605–612.

    Article  CAS  Google Scholar 

  • Narisawa, K., Kageyama, K., & Hashiba, T. (1996). Efficient root infection with single resting spores of Plasmodiophora brassicae. Mycological Research, 100, 855–858.

    Article  Google Scholar 

  • Neuhaus, K., Grsic-Rausch, S., Sauerteig, S., & Ludwig-Müller, J. (2000). Arabidopsis plants transformed with nitrilase 1 or 2 in antisense direction are delayed in clubroot development. Journal of Plant Physiology, 156, 756–761.

    CAS  Google Scholar 

  • Ockendon, J. G., & Buczacki, S. T. (1979). Indole glucosinolate incidence and clubroot susceptibility of three cruciferous weeds. Transactions of the British mycological Society, 72, 156–157.

    Article  CAS  Google Scholar 

  • Östin, A., Kowalczyk, M., Bhalerao, R. P., & Sandberg, G. (1998). Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiology, 118, 285–296.

    Article  PubMed  Google Scholar 

  • Parthier, B. (1991). Jasmonates, new regulators of plant growth and development: Many facts and few hypotheses on their actions. Botanica Acta, 104, 446–454.

    CAS  Google Scholar 

  • Pauw, B., & Memelink, J. (2004). Jasmonate-responsive gene expression. Journal of Plant Growth Regulation, 23, 200–210.

    CAS  Google Scholar 

  • Peer, W. A., Bandyopadhyay, A., Blakeslee, J. J., Makam, S. N., Chen, R. J., & Masson, P. H., et al. (2004). Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. The Plant Cell, 16, 1898–1911.

    Article  PubMed  CAS  Google Scholar 

  • Peña-Cortés, H., Barrios, P., Dorta, F., Polanco, V., Sánchez, C., & Sánchez, E., et al. (2004). Involvement of jasmonic acid and derivatives in plant response to pathogen and insects and in fruit ripening. Journal of Plant Growth Regulation, 23, 246–260.

    Google Scholar 

  • Pozo, M. J., Van Loon, L. C., & Pieterse, C. M. J. (2004). Jasmonates – Signals in plant-microbe interactions. Journal of Plant Growth Regulation, 23, 211–222.

    CAS  Google Scholar 

  • Quint, M., & Gray, W. M. (2006). Auxin signaling. Current Opinion in Plant Biology, 9, 448–453.

    Article  PubMed  CAS  Google Scholar 

  • Rausch, T., Butcher, D. N., & Hilgenberg, W. (1983). Indole-3-methylglucosinolate biosynthesis and metabolism in clubroot diseased plants. Physiologia Plantarum, 58, 93–100.

    Article  CAS  Google Scholar 

  • Schuller, A., & Ludwig-Müller, J. (2002). Isolation of differentially expressed genes involved in clubroot disease. Plant Protection Science, 38, 483–486.

    Google Scholar 

  • Schuller, A., & Ludwig-Müller, J. (2006). A family of auxin conjugate hydrolases from Brassica rapa: Characterization and expression during clubroot disease. New Phytologist, 171, 145–158.

    Article  PubMed  CAS  Google Scholar 

  • Searle, L. M., Chamberlain, K., Rausch, T., & Butcher, D. N. (1982). The conversion of 3-indolemethylglucosinolate to 3-indoleacetonitrile by myrosinase and its relevance to the clubroot disease of the cruciferae. Journal of Experimental Botany, 33, 935–942.

    Article  CAS  Google Scholar 

  • Siemens, J., Nagel, M., Ludwig-Müller, J., & Sacristán, M. D. (2002). The interaction of Plasmodiophora brassicae and Arabidopsis thaliana: Parameters for disease quantification and screening of mutant lines. Journal of Phytopathology, 150, 592–605.

    Article  Google Scholar 

  • Siemens, J., Keller, I., Sarx, J., Kunz, S., Schuller, A., & Nagel, W., et al. (2006). Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Molecular Plant-Microbe Interaction, 19, 480–494.

    Article  CAS  Google Scholar 

  • Siemens, J., Glawischnig, E., & Ludwig-Müller, J. (2007). Indole glucosinolates and camalexin do not influence the development of the clubroot disease in Arabidopsis thaliana. Journal of Phytopathology (in press).

  • Staswick, P. E., Tiryaki, I., & Rowe, M. L. (2002). Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic and indole-3-acetic acids in an assay for adenylation. The Plant Cell, 14, 1405–1415.

    Article  PubMed  CAS  Google Scholar 

  • Staswick, P. E., & Tiryaki, I. (2004). The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. The Plant Cell, 16, 2117–2127.

    Article  PubMed  CAS  Google Scholar 

  • Staswick, P. E., Serban, B., Rowe, M., Tiryaki, I., Maldonado, M. T., & Maldonado, M. C., et al. (2005). Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. The Plant Cell, 17, 616–627.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, S., Ito, S., Kameya-Iwaki, M., Katumoto, K., & Nishi, Y. (1993). Occurrence and distribution of clubroot disease on two cruciferous weeds, Cardamine flexuosa and C. scutata, in Japan. Transactions of the mycolgical Society Japan, 34, 381–388.

    Google Scholar 

  • Vandenbussche, F., Smalle, J., Le, J., Saibo, N. J. M., De Paepe, A., & Chaerle, L., et al. (2003). The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin. Plant Physiology, 131, 1228–1238.

    Article  PubMed  CAS  Google Scholar 

  • Voorrips, R. E., & Kanne, H. J. (1997). Genetic analysis of resistance to clubroot (Plasmodiophora brassicae) in Brassica oleracea. I. Analysis of symptom grades. Euphytica, 93, 31–39.

    Article  Google Scholar 

  • Webb, P. C. R. (1949). Zoosporangia, believed to be those of Plasmodiophora brassicae, in the root hairs of non-cruciferous plants. Nature, 163, 608.

    PubMed  CAS  Google Scholar 

  • Webster, M. A., & Dixon, G. R. (1991a). Calcium, pH and inoculum concentration influencing colonization by Plasmodiophora brassicae. Mycological Research, 95, 64–73.

    CAS  Google Scholar 

  • Webster, M. A., & Dixon, G. R. (1991b). Boron, pH and inoculum concentration influencing colonization by Plasmodiophora brassicae. Mycological Research, 95, 74–79.

    Article  CAS  Google Scholar 

  • Werner, T., Motyka, V., Laucou, V., Smets, R., van Onckelen, H., & Schmülling, T. (2003). Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. The Plant Cell, 15, 2532–2550.

    Article  PubMed  CAS  Google Scholar 

  • Williams, P. H., & McNabola, S. S. (1967). Fine structure of Plasmodiophora brassicae in sporogenesis. Canadian Journal of Botany, 45, 1665–1669.

    Google Scholar 

  • Williams, P. H., Aist, S. J., & Aist, J. R. (1971). Response of cabbage root hairs to infection by Plasmodiophora brassicae. Canadian Journal of Botany, 49, 41–47.

    Google Scholar 

  • Woodward, A. W., & Bartel, B. (2005). Auxin: regulation, action and interaction. Annals of Botany, 95, 707–735.

    Article  PubMed  CAS  Google Scholar 

  • Woronin, M. (1878). Plasmodiophora brassicae, Urheber der Kohlpflanzen-Hernie. Jahrbuch der Wissenschaften in Botanik, 11, 548–574.

    Google Scholar 

  • Yang, Y., Hammes, U. Z., Taylor, C. G., Schachtmann, D. P., & Nielsen, E. (2006). High-affinity auxin transport by the AUX1 influx carrier protein. Current Biology, 16, 1123–1127.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Work in the author’s laboratory was funded by the Deutsche Forschungsgemeinschaft (DFG) and the State of Saxony (Sächsisches Landesamt für Umwelt und Geologie).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jutta Ludwig-Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludwig-Müller, J., Schuller, A. What can we learn from clubroots: alterations in host roots and hormone homeostasis caused by Plasmodiophora brassicae . Eur J Plant Pathol 121, 291–302 (2008). https://doi.org/10.1007/s10658-007-9237-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-007-9237-2

Keywords

Navigation