Skip to main content
Log in

Somatic health effects of Chernobyl: 30 years on

  • REVIEW
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

2016 marked the 30th anniversary of the Chernobyl Nuclear Power Plant accident. We and others wrote reviews for the 25th anniversary. Since then, additional papers have appeared and it seems timely to highlight lessons learned. To present, not a systematic review, but a commentary drawing attention to notable findings. We include not only recent reports and updates on previous results, but key findings from prior Chernobyl studies. The dose-dependent increase in Papillary Thyroid Cancer (PTC) following childhood I-131 exposure in Ukraine and Belarus has now been shown to persist for decades. Studies of post-Chernobyl PTCs have produced novel information on chromosomal rearrangements and gene fusions, critical to understanding molecular mechanisms. Studies of clean-up workers/liquidators suggest dose-related increases of thyroid cancer and hematological malignancies in adults. They also report increases in cardiovascular and cerebrovascular disease. If confirmed, these would have significant public health and radiation protection implications. The lens opacities following low to moderate doses found earlier are also a concern, particularly among interventional radiologists who may receive substantial lens doses. Finally, there is some, inconsistent, evidence for genetic effects among offspring of exposed persons. Further efforts, including improved dosimetry, collection of information on other risk factors, and continued follow-up/monitoring of established cohorts, could contribute importantly to further understand effects of low doses and dose-rates of radiation, particularly in young people, and ensure that appropriate public health and radiation protection systems are in place. This will require multinational collaborations and long-term funding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Havenaar JM, Bromet EJ, Gluzman S. The 30-year mental health legacy of the Chernobyl disaster. World Psychiatry. 2016;15:181–2. doi:10.1002/wps.20335.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cardis E, Hatch M. The Chernobyl accident—an epidemiological perspective. Clin Oncol R Coll Radiol G B. 2011;23:251–60. doi:10.1016/j.clon.2011.01.510.

    Article  CAS  Google Scholar 

  3. Tronko MD, Howe GR, Bogdanova TI, Bouville AC, Epstein OV, Brill AB, et al. A cohort study of thyroid cancer and other thyroid diseases after the Chernobyl accident: thyroid cancer in Ukraine detected during first screening. J Natl Cancer Inst. 2006;98:897–903.

    Article  PubMed  Google Scholar 

  4. Zablotska LB, Ron E, Rozhko AV, Hatch M, Polyanskaya ON, Brenner AV, et al. Thyroid cancer risk in Belarus among children and adolescents exposed to radioiodine after the Chernobyl accident. Br J Cancer. 2011;104:181–7. doi:10.1038/sj.bjc.6605967.

    Article  CAS  PubMed  Google Scholar 

  5. Astakhova LN, Anspaugh LR, Beebe GW, Bouville A, Drozdovitch VV, Garber V, et al. Chernobyl-related thyroid cancer in children of Belarus: a case-control study. Radiat Res. 1998;150:349–56.

    Article  CAS  PubMed  Google Scholar 

  6. Cardis E, Kesminiene A, Ivanov V, Malakhova I, Shibata Y, Khrouch V, et al. Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst. 2005;97:724–32.

    Article  PubMed  Google Scholar 

  7. Kopecky KJ, Stepanenko V, Rivkind N, Voilleque P, Onstad L, Shakhtarin V, et al. Childhood thyroid cancer, radiation dose from Chernobyl, and dose uncertainties in Bryansk Oblast, Russia: a population-based case–control study. Radiat Res. 2006;166:367–74.

    Article  CAS  PubMed  Google Scholar 

  8. Jacob P, Bogdanova TI, Buglova E, Chepurniy M, Demidchik Y, Gavrilin Y, et al. Thyroid cancer risk in areas of Ukraine and Belarus affected by the Chernobyl accident. Radiat Res. 2006;165:1–8.

    Article  CAS  PubMed  Google Scholar 

  9. Hatch M, Brenner A, Bogdanova T, Derevyanko A, Kuptsova N, Likhtarev I, et al. A screening study of thyroid cancer and other thyroid diseases among individuals exposed in utero to iodine-131 from Chernobyl fallout. J Clin Endocrinol Metab. 2009;94:899–906. doi:10.1210/jc.2008-2049.

    Article  CAS  PubMed  Google Scholar 

  10. Brenner AV, Tronko MD, Hatch M, Bogdanova T, Oliynyk V, Lubin J. I-131 dose response for incident cancers in Ukraine related to the Chernobyl accident. Environ Health Perspect. 2011;119(7):933–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Little MP, Kukush AG, Masiuk SV, Shklyar S, Carroll RJ, Lubin JH, et al. Impact of uncertainties in exposure assessment on estimates of thyroid cancer risk among Ukrainian children and adolescents exposed from the Chernobyl accident. PloS ONE. 2014;29(9):e85723. doi:10.1371/journal.pone.0085723.

    Article  Google Scholar 

  12. Furukawa K, Preston D, Funamoto S, Yonehara S, Ito M, Tokuoka S, et al. Long-term trend of thyroid cancer risk among Japanese atomic-bomb survivors: 60 years after exposure. Int J Cancer. 2013;132:1222–6. doi:10.1002/ijc.27749.

    Article  CAS  PubMed  Google Scholar 

  13. Shakhtarin VV, Tsyb AF, Stepanenko VF, Orlov MY, Kopecky KJ, Davis S. Iodine deficiency, radiation dose, and the risk of thyroid cancer among children and adolescents in the Bryansk region of Russia following the Chernobyl power station accident. Int J Epidemiol. 2003;32:584–91.

    Article  CAS  PubMed  Google Scholar 

  14. Drozd VM, Saenko VA, Brenner AV, Drozdovitch V, Pashkevich VI, Kudelsky AV, et al. Major factors affecting incidence of childhood thyroid cancer in Belarus after the Chernobyl accident: do nitrates in drinking water play a role? PloS ONE. 2015;10:e0137226. doi:10.1371/journal.pone.0137226.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ivanov VK, Chekin SY, Kashcheev V, Maksioutov MA, Tumanov KA. Risk of thyroid cancer among Chernobyl emergency workers of Russia. Radiat Environ Biophys. 2008;47:463–7.

    Article  CAS  PubMed  Google Scholar 

  16. Rahu K, Hakulinen T, Smailyte G, Stengrevics A, Auvinen A, Inskip PD, et al. Site-specific cancer risk in the Baltic cohort of Chernobyl cleanup workers, 1986–2007. Eur J Cancer (Oxf Engl 1990). 2013;49:2926–33. doi:10.1016/j.ejca.2013.04.014.

    Article  Google Scholar 

  17. Kesminiene A, Evrard A-S, Ivanov VK, Malakhova IV, Kurtinaitise J, Stengrevics A, et al. Risk of thyroid cancer among Chernobyl liquidators. Radiat Res. 2012;178:425–36. doi:10.1667/RR2975.1.

    Article  CAS  PubMed  Google Scholar 

  18. Thomas GA, Bunnell H, Cook HA, Williams ED, Nerovnya A, Cherstvoy ED, et al. High prevalence of RET/PTC rearrangements in Ukrainian and Belarusian post-Chernobyl thyroid papillary carcinomas: a strong correlation between RET/PTC3 and the solid-follicular variant. J Clin Endocrinol Metab. 1999;84:4232–8.

    CAS  PubMed  Google Scholar 

  19. Bogdanova TI, Zurnadzhy LY, Nikiforov YE, Leeman-Neill RJ, Tronko MD, Chanock S, et al. Histopathological features of papillary thyroid carcinomas detected during four screening examinations of a Ukrainian-American cohort. Br J Cancer. 2015;113:1556–64. doi:10.1038/bjc.2015.372.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zablotska LB, Nadyrov EA, Rozhko AV, Gong Z, Polyanskaya ON, McConnell RJ, et al. Analysis of thyroid malignant pathologic findings identified during 3 rounds of screening (1997–2008) of a cohort of children and adolescents from belarus exposed to radioiodines after the Chernobyl accident. Cancer. 2015;121:457–66. doi:10.1002/cncr.29073.

    Article  PubMed  Google Scholar 

  21. Thomas GA. The Chernobyl Tissue Bank: integrating research on radiation-induced thyroid cancer. J Radiol Prot Off J Soc Radiol Prot. 2012;32:N77–80. doi:10.1088/0952-4746/32/1/N77.

    CAS  Google Scholar 

  22. Thomas GA, Williams ED, Becker DV, Bogdanova TI, Demidchik EP, Lushnikov E, et al. Creation of a tumour bank for post Chernobyl thyroid cancer. Clin Endocrinol (Oxf). 2001;55:423.

    Article  CAS  Google Scholar 

  23. Abend M, Pfeiffer RM, Ruf C, Hatch M, Bogdanova TI, Tronko MD, et al. Iodine-131 dose dependent gene expression in thyroid cancers and corresponding normal tissues following the Chernobyl accident. PLoS ONE. 2012;7:e39103. doi:10.1371/journal.pone.0039103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abend M, Pfeiffer RM, Ruf C, Hatch M, Bogdanova TI, Tronko MD, et al. Iodine-131 dose-dependent gene expression: alterations in both normal and tumour thyroid tissues of post-Chernobyl thyroid cancers. Br J Cancer. 2013;109:2286–94. doi:10.1038/bjc.2013.574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yamashita S, Saenko VA. Mechanisms of disease: molecular genetics of childhood thyroid cancers. Mech Dis Mol Genet Child Thyroid Cancers. 2007;3:422–9.

    CAS  Google Scholar 

  26. Leeman-Neill RJ, Brenner AV, Little MP, Bogdanova TI, Hatch M, Zurnadzy LY, et al. RET/PTC and PAX8/PPARgamma chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics. Cancer. 2013;119:1792–9. doi:10.1002/cncr.27893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leeman-Neill RJ, Kelly LM, Liu P, Brenner AV, Little MP, Bogdanova TI, et al. ETV6-NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer. Cancer. 2014;120:799–807. doi:10.1002/cncr.28484.

    Article  CAS  PubMed  Google Scholar 

  28. Ito T, Seyama T, Iwamoto KS, Hayashi T, Mizuno T, Tsuyama N, et al. In vitro irradiation is able to cause RET oncogene rearrangement. Cancer Res. 1993;53:2940–3.

    CAS  PubMed  Google Scholar 

  29. Ciampi R, Knauf JA, Kerler R, Gandhi M, Zhu Z, Nikiforova MN, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Investig. 2005;115:94–101. doi:10.1172/JCI23237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Selmansberger M, Braselmann H, Hess J, Bogdanova T, Abend M, Tronko M, et al. Genomic copy number analysis of Chernobyl papillary thyroid carcinoma in the Ukrainian-American Cohort. Carcinogenesis. 2015;36(11):1381–7. doi:10.1093/carcin/bgv119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Selmansberger M, Feuchtinger A, Zurnadzhy L, Michna A, Kaiser JC, Abend M, et al. CLIP2 as radiation biomarker in papillary thyroid carcinoma. Oncogene. 2015;34:3917–25. doi:10.1038/onc.2014.311.

    Article  CAS  PubMed  Google Scholar 

  32. Kaiser JC, Meckbach R, Eidemüller M, Selmansberger M, Unger K, Shpak V, et al. Integration of a radiation biomarker into modeling of thyroid carcinogenesis and post-Chernobyl risk assessment. Carcinogenesis 2016;37:1152–1160. doi:10.1093/carcin/bgw102.

  33. Tronko MD, Brenner AV, Olijnyk VA, Robbins J, Epstein OV, McConnell RJ, et al. Autoimmune thyroiditis and exposure to iodine 131 in the Ukrainian cohort study of thyroid cancer and other thyroid diseases after the Chernobyl accident: results from the first screening cycle (1998–2000). J Clin Endocrinol Metab. 2006;91:4344–51. doi:10.1210/jc.2006-0498.

    Article  CAS  PubMed  Google Scholar 

  34. Zablotska LB, Bogdanova TI, Ron E, Epstein OV, Robbins J, Likhtarev IA, et al. A cohort study of thyroid cancer and other thyroid diseases after the Chernobyl accident: dose–response analysis of thyroid follicular adenomas detected during first screening in Ukraine (1998–2000). Am J Epidemiol. 2008;167:305–12.

    Article  PubMed  Google Scholar 

  35. Zablotska LB, Nadyrov EA, Polyanskaya ON, McConnell RJ, O’Kane P, Lubin J, et al. Risk of thyroid follicular adenoma among children and adolescents in Belarus exposed to iodine-131 after the Chernobyl accident. Am J Epidemiol. 2015;182:781–90. doi:10.1093/aje/kwv127.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cahoon EK, Nadirov EA, Polyanskaya ON, Yauseyenka VV, Veyalkin IV, Yeudachkova TI, et al. Risk of thyroid nodules in residents of Belarus exposed to Chernobyl fallout as children and adolescents. J Clin Endocrinol Metab. 2017;102(5):1–11.

    Google Scholar 

  37. Ostroumova E, Brenner A, Oliynyk V, McConnell R, Robbins J, Terekhova G, et al. Subclinical hypothyroidism after radioiodine exposure: Ukrainian-American cohort study of thyroid cancer and other thyroid diseases after the Chernobyl accident (1998–2000). Environ Health Perspect. 2009;117:745–50. doi:10.1289/ehp.0800184.

    Article  CAS  PubMed  Google Scholar 

  38. Ostroumova E, Rozhko A, Hatch M, Furukawa K, Polyanskaya O, McConnell RJ, et al. Measures of thyroid function among Belarusian children and adolescents exposed to iodine-131 from the accident at the Chernobyl nuclear plant. Environ Health Perspect. 2013;121:865–71. doi:10.1289/ehp.1205783.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hatch M, Furukawa K, Brenner A, Olinjyk V, Ron E, Zablotska L, et al. Prevalence of hyperthyroidism after exposure during childhood or adolescence to radioiodines from the Chernobyl nuclear accident: dose-response results from the Ukrainian-American Cohort Study. Radiat Res. 2010;174:763–72. doi:10.1667/RR2003.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pukkala E, Kesminiene A, Poliakov S, Ryzhov A, Drozdovitch V, Kovgan L, et al. Breast cancer in Belarus and Ukraine after the Chernobyl accident. Int J Cancer. 2006;119:651–8.

    Article  CAS  PubMed  Google Scholar 

  41. Hatch M, Ostroumova E, Brenner A, Federenko Z, Gorokh Y, Zvinchuk O, et al. Non-thyroid cancer in Northern Ukraine in the post-Chernobyl period: short report. Cancer Epidemiol. 2015;39(3):279–83. doi:10.1016/j.canep.2015.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ostroumova E, Hatch M, Brenner A, Nadyrov E, Veyalkin I, Polyanskaya O, et al. Non-thyroid cancer incidence in Belarusian residents exposed to Chernobyl fallout in childhood and adolescence: Standardized Incidence Ratio analysis, 1997–2011. Environ Res. 2016;147:44–9. doi:10.1016/j.envres.2016.01.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Prysyazhnyuk A, Bazyka DA, Romanenko AY, Gudzenko NA, Fuzik MM, Trotsyuk NK, et al. Quarter of century since the Chernobyl accident: cancer risks in affected groups of population. Probl Radiat Med Radiobiol. 2014;19:147–69.

    Google Scholar 

  44. Prysyazhnyuk A, Gristchenko V, Fedorenko Z, Gulak L, Fuzik M, Slipeniuk K, et al. Twenty years after the Chernobyl accident: solid cancer incidence in various groups of the Ukrainian population. Radiat Environ Biophys. 2007;46:43–51.

    Article  CAS  PubMed  Google Scholar 

  45. Kaminskyi OV, Kopylova OV, Afanasyev DE, Pronin OV. Non cancer thyroid and other endocrine disease in children and adults exposed to ionizing radiation after the ChNPP accident. Probl Radiat Med Radiobiol. 2015;20:341–55.

    CAS  Google Scholar 

  46. Buzunov VO, Prikaschikova KY, Gubina IG, Kostiuk GV, Tereschenko SO. Radiation dose- and sex-dependent cardiovascular mortality in residents of contaminated areas after the Chernobyl NPP accident, 1988–2010 observation period. Probl Radiat Med Radiobiol. 2013;18:50–8.

    Google Scholar 

  47. Dubrova YE, Grant G, Chumak AA, Stezhka VA, Karakasian AN. Elevated minisatellite mutation rate in the post-Chernobyl families from Ukraine. Am J Hum Genet. 2002;71:801–9. doi:10.1086/342729.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dubrova YE, Nesterov VN, Krouchinsky NG, Ostapenko VA, Neumann R, Neil DL, et al. Human minisatellite mutation rate after the Chernobyl accident. Nature. 1996;380(6576):683–6.

    Article  CAS  PubMed  Google Scholar 

  49. Slebos RJC, Little RE, Umbach DM, Antipkin Y, Zadaorozhnaja TD, Mendel NA, et al. Mini-and microsatellite mutations in children from Chernobyl accident cleanup workers. Mutat Res. 2004;559:143–51. doi:10.1016/j.mrgentox.2004.01.003.

    Article  CAS  PubMed  Google Scholar 

  50. Kodaira M, Satoh C, Hiyama K, Toyama K. Lack of effects of atomic bomb radiation on genetic instability of tandem-repetitive elements in human germ cells. Am J Hum Genet. 1995;57:1275–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Little MP, Goodhead DT, Bridges BA, Bouffler SD. Evidence relevant to untargeted and transgenerational effects in the offspring of irradiated parents. Mutat Res. 2013;753:50–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bromet EJ, Havenaar JM, Guey LT. A 25 year retrospective review of the psychological consequences of the Chernobyl accident. Clin Oncol R Coll Radiol G B. 2011;23:297–305. doi:10.1016/j.clon.2011.01.501.

    Article  CAS  Google Scholar 

  53. Kesminiene A, Evrard AS, Ivanov VC, Malakhova IV, Kurtinaitis J, Stengrevics A, et al. Risk of hematological malignancies among Chernobyl liquidators. Radiat Res. 2008;170:721–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Romanenko AY, Finch SC, Hatch M, Lubin JH, Bebeshko VG, Bazyka DA, et al. The Ukrainian-American study of leukemia and related disorders among Chernobyl cleanup workers from Ukraine: III. Radiation risks. Radiat Res. 2008;170:711–20. doi:10.1667/RR1404.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kryuchkov V, Chumak V, Maceika E, Anspaugh LR, Cardis E, Bakhanova E, Golovanov I, Drozdovitch V, Luckyanov N, Kesminiene A, Voillequé P, Bouville A. RADRUE method for reconstruction of external photon doses for Chernobyl liquidators in epidemiological studies. Health Phys. 2009;97(4):275–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zablotska LB, Bazyka D, Lubin JH, Gudzenko N, Little MP, Hatch M, et al. Radiation and the risk of chronic lymphocytic and other leukemias among Chernobyl cleanup workers. Environ Health Perspect. 2013;121:59–65. doi:10.1289/ehp.1204996.

    Article  PubMed  Google Scholar 

  57. Ivanov VK, Tsyb AF, Khait SE, Kashcheev VV, Chekin SY, Maksioutov MA, et al. Leukemia incidence in the Russian cohort of Chernobyl emergency workers. Radiat Environ Biophys. 2012;51(12):143–9. doi:10.1007/s00411-011-0400-y.

    Article  CAS  PubMed  Google Scholar 

  58. Bazyka DA, Gudzenko NA, Dyagil IS, Babkina NG, Chumak VV, Bakhanova EV, et al. Multiple myeloma among Chernobyl accident clean-up workers—state and perspectives of analytical study. Probl Radiat Med Radiobiol. 2013;18:169–72.

    Google Scholar 

  59. Cardis E, Gilbert ES, Carpenter L, Howe G, Kato I, Armstrong BK, et al. Effects of low doses and low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries. Radiat Res. 1995;142:117–32.

    Article  CAS  PubMed  Google Scholar 

  60. Cardis E, Vrijheid M, Blettner M, Gilbert E, Hakama M, Hill C, et al. The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation related cancer risks. Radiat Res. 2007;167:396–416.

    Article  CAS  PubMed  Google Scholar 

  61. Leuraud K, Richardson DB, Cardis E, Daniels RD, Gillies M, O’Hagan JA, et al. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study. Lancet Haematol. 2015;2:e276–81. doi:10.1016/S2352-3026(15)00094-0.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hsu W-L, Preston DL, Soda M, Sugiyama H, Funamoto S, Kodama K, et al. The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950–2001. Radiat Res. 2013;179:361–82. doi:10.1667/RR2892.1.

    Article  CAS  PubMed  Google Scholar 

  63. Kashcheev VV, Chekin SY, Maksioutov MA, Tumanov KA, Kochergina EV, Kashcheeva PV, et al. Incidence and mortality of solid cancer among emergency workers of the Chernobyl accident: assessment of radiation risks for the follow-up period of 1992–2009. Radiat Environ Biophys. 2015;54:13–23. doi:10.1007/s00411-014-0572-3.

    Article  CAS  PubMed  Google Scholar 

  64. Richardson DB, Cardis E, Daniels RD, Gillies M, O’Hagan JA, Hamra GB, et al. Risk of cancer from occupational exposure to ionising radiation: retrospective cohort study of workers in France, the United Kingdom, and the United States (INWORKS). The BMJ. 2015;351:h5359. doi:10.1136/bmj.h5359.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Worgul BV, Kundiyev YI, Sergiyenko NM, Chumak VV, Vitte PM, Medvedovsky C, et al. Cataracts among Chernobyl clean-up workers: implications regarding permissible eye exposures. Radiat Res. 2007;167:233–43.

    Article  CAS  PubMed  Google Scholar 

  66. ICRP. Statement on tissue reactions. International Commission for Radiological Protection (IRCP) ref 4825-3093-1464. 2011. http://www.icrp.org/docs/ICRP%20Statement%20on%20Tissue%20Reactions.pdf.

  67. Ivanov VK, Maksioutov MA, Chekin SY, Petrov AV, Biryukov AP, Kruglova ZG, et al. The risk of radiation-induced cerebrovascular disease in Chernobyl emergency workers. Health Phys. 2006;90:199–207. doi:10.1097/01.HP.0000175835.31663.ea.

    Article  CAS  PubMed  Google Scholar 

  68. Kashcheev VV, Chekin SY, Maksioutov MA, Tumanov KA, Menyaylo AN, Kochergina EV, et al. Radiation-epidemiological study of cerebrovascular diseases in the cohort of Russian recovery operation workers of the Chernobyl accident. Health Phys. 2016;111:192–197. doi:10.1097/HP.0000000000000523.

  69. Krasnikova LI, Buzunov VO. Role of radiation and non-radiation factors on the development of coronary heart disease in the Chernobyl clean-up workers: epidemiological study results. Probl Radiat Med Radiobiol. 2014;19:67–79.

    CAS  Google Scholar 

  70. Krasnikova LI, Buzunov VO, Solonovitch SI. Radiation and non-radiation factors impact on development of cerebrovascular diseases in the Chernobyl clean-up workers. The epidemiological study results. Probl Radiat Med Radiobiol. 2013;18:89–101.

    Google Scholar 

  71. Ilyenko I, Lyaskivska O, Bazyka D. Analysis of relative telomere length and apoptosis in humans exposed to ionising radiation. Exp Oncol. 2011;33:235–8.

    CAS  PubMed  Google Scholar 

  72. Reste J, Zvigule G, Zvagule T, Kurjane N, Eglite M, Gabruseva N, et al. Telomere length in Chernobyl accident recovery workers in the late period after the disaster. J Radiat Res (Tokyo). 2014;55:1089–100. doi:10.1093/jrr/rru060.

    Article  CAS  Google Scholar 

  73. WHO. 1986–2016: Chernobyl at 30. An update. 2016. http://www.who.int/ionizing_radiation/chernobyl/Chernobyl-update.pdf?ua=1

Download references

Acknowledgements

The authors would like to thank their many long-term collaborators in the Baltic Countries, Belarus, the Russian Federation and Ukraine for their excellent work and their dedication to the study of the health consequences of the Chernobyl accident and the wellbeing of the affected populations. ISGlobal is a member of the CERCA Programme, Generalitat de Catalunya. Maureen Hatch was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Division of Cancer Epidemiology and Genetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Cardis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatch, M., Cardis, E. Somatic health effects of Chernobyl: 30 years on. Eur J Epidemiol 32, 1047–1054 (2017). https://doi.org/10.1007/s10654-017-0303-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-017-0303-6

Keywords

Navigation