Skip to main content

Advertisement

Log in

Multi-element contamination in soils from major mining areas in Northeastern of Brazil

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Mining has become one of the main factors in the global biogeochemical cycle of potentially toxic elements. Therefore, it is considered one of the anthropogenic activities with the greatest negative impact on the environment. These impacts are maximized in semiarid regions, where mining activities can lead to soil degradation and decrease in land productivity. This study aimed to assess the level of contamination in natural, urban, and agricultural soils of three important mining areas, where approximately 80,000 people live, and pollution levels have never been determined before. For this purpose, soil samples were collected around iron, uranium, and vanadium mines, as well as in the main human settlements of the region. The concentrations of 34 elements were determined by instrumental neutron analysis activation (INAA) and inductively coupled plasma optical emission spectrometry (ICP OES) techniques. Pollution indices (CF, EF, mCd, PLI, and REEP) revealed that there is a moderate to heavy level of pollution for 89% of the analyzed elements. Additionally, an extreme contamination level was observed in 78% of the samples, for at least one element. Statistical analyses were performed to identify patterns in the distribution and common sources of pollution. The results suggest that the concentrations for Al, Ba, Hf, Na, Pb, Rb, REE, Ta, Th, U, Zn, and Zr are associated with geogenic causes. However, the influence of anthropogenic sources such as agriculture and mining on the accumulation of these elements in soils should not be disregarded. In contrast, the contents of As, Br, Cd, Co, Cr, Cs, Cu, Fe, K, Mn, Ni, Sc, Ti, and V reflect the direct impact of anthropogenic sources.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Certified Reference Material from Service d´ Analyse des Roches et des Minérauxs (SARM), France.

  2. Certified Reference Material from the Geological Survey of Japan (GSJ), Japan.

  3. Certified Reference Material from the International Atomic Energy Agency (IAEA), Austria.

  4. Certified Reference Material from the United States Geological Survey (USGS), United States.

References

  • Akinci, G., & Guven, D. E. (2019). Assessment of chemical fractionations and mobilization potentials for heavy metals in wastes and other solid matrices in a mining site in the inland Aegean Region in Turkey. Environmental Monitoring and Assessment, 191, 25–38. https://doi.org/10.1007/s10661-018-7158-5

    Article  CAS  Google Scholar 

  • Bahia Mineração (BAMIN). Pedra de Ferro Project [online]. Salvador: BAMIN, 2016 [viewed: March, 11th, 2020]. Available: https://www.bamin.com.br/ing/pagina.php?cod=1

  • Bern, C. R., Walton-Day, K., & Naftz, D. L. (2019). Improved enrichment factor calculations through principal component analysis: Example from soils near breccia pipe uranium mines, Arizona, USA. Environmental pollution, 248, 90–100. https://doi.org/10.1016/j.envpol.2019.01.122

    Article  CAS  Google Scholar 

  • Biondi, C. M., Nascimento, C. W. A., Neta, A. B. F., & Ribeiro, M. R. (2011). Teores de Fe, Mn, Zn, Cu, Ni e Co em solos de referência de Pernambuco. Revista Brasileira de Ciência do Solo, 35, 1057–1066

    Article  CAS  Google Scholar 

  • Bonotto, D. M. (2015). 226Ra and 228Ra in mineral waters of southeast Brazil. Environmental Earth Sciences, 74, 839–853. https://doi.org/10.1007/s12665-015-4088-1

    Article  CAS  Google Scholar 

  • Burritt, R. L., & Christ, K. L. (2018). Water risk in mining: Analysis of the Samarco dam failure. Journal of Cleaner Production, 178, 196–205. https://doi.org/10.1016/j.jclepro.2018.01.042

    Article  Google Scholar 

  • Centro de Tecnologia Mineral (CETEM). Exploração de minério de ferro em Caetité (BA) afeta meio ambiente e comunidades locais. Ministério de Ciência e Tecnologia, Rio de Janeiro, 2013.

  • Chauvel, C., & Rudnick, R. L. (2016). Large-ion Lithophile Elements In W. White (Eds.), Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_232-1.

  • Conselho Nacional do Meio Ambiente (CONAMA). Resolution Nº 420, December 28th, 2009. Ministry of Environment, Brazil. DOU n° 249, 2009.

  • Da Silva, Y. J. A. B., Do Nascimento, C. W. A., Cantalice, J. R. B., Da Silva, Y. J. A. B., & Cruz, C. M. C. A. (2015). Watershed-scale assessment of the background concentrations and guidance values for heavy metals in soils from a semiarid and coastal zone of Brazil. Environmental Monitoring and Assessment, 187, 558–568. https://doi.org/10.1007/s10661-015-4782-1

    Article  CAS  Google Scholar 

  • De Geer, L. E. (2004). Currie detection limits in gamma-ray spectroscopy. Applied Radiation Isotopes, 61, 151–160. https://doi.org/10.1016/j.apradiso.2004.03.037

    Article  CAS  Google Scholar 

  • De Paula, F. C. F., & Abrahão, J. R. S. (1991). Geochemical prospecting for vanadium and chromium in the Iramaia sheet, Bahia State, Brazil. Journal of Geochemical Exploration, 41, 125–135.

    Article  Google Scholar 

  • De Queiroz, T. D. A., 2016. Geological mapping, petrography, lithogeochemical and geophysical aspects of the Maracás region (FOLHA SD.24-V-D-I), Dissertation presented to the Geosciences Institute of the Federal University of Bahia. Bahia, Brazil.

  • De Sá Paye, H., De Mello, J. W., De Magalhães Mascarenhas, G. R. L., & Gasparon, M. (2016). Distribution and fractionation of the rare earth elements in Brazilian soils. Journal of Geochemical Exploration, 161, 27–41. https://doi.org/10.1016/j.gexplo.2015.09.003

    Article  CAS  Google Scholar 

  • Do Carmo, F. F., Kamino, L. H. Y., Junior, R. T., De Campos, I. C., Do Carmo, F. F., Silvino, G., De Castro, K. J. S. X., Mauro, M. L., Rodrigues, N. U. A., Miranda, M. P. S., & Pinto, C. E. F. (2017). Fundão tailings dam failures: the environment tragedy of the largest technological disaster of Brazilian mining in global context. Perspectives in ecology and conservation, 15, 145–151. https://doi.org/10.1016/j.pecon.2017.06.002

    Article  Google Scholar 

  • Doabi, S. A., Karami, M., Afyuni, M., & Yeganeh, M. (2018). Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotoxicology and Environmental Safety, 163, 153–164. https://doi.org/10.1016/j.ecoenv.2018.07.057.

    Article  CAS  Google Scholar 

  • Doležalová, H. W., Mihočová, S., Chovanec, P., & Pavlovský, J. (2019). Potential ecological risk and human health risk assessment of heavy metal pollution in industrial affected soils by coal mining and metallurgy in Ostrava, Czech Republic. International journal of environmental research and public health, 16, 4495

    Article  Google Scholar 

  • Brazilian Agricultural Research Corporation (EMBRAPA). Documento 115: Amostragem e cuidados na coleta de solo para fins de fertilidade. Manaus, AM: EMBRAPA, 2014.

  • Eurasian Natural Resources Corporation (ENRC). Deposit geology and the Fe ore project in Caetité, Bahia. 2012. www.enrc.com

  • Fernandes, H. M., Gomiero, L. A., Peres, V., Franklin, M. R., & Simões Filho, F. F. L. (2008). Critical analysis of the waste management performance of two uranium production units in Brazil-part II: Caetite production center. Journal of Environmental Management, 88, 914–925. https://doi.org/10.1016/j.jenvman.2007.04.022

    Article  CAS  Google Scholar 

  • Fernandes, H. M.; Franklin, M. R.; Leoni, G. M.; Almeida, M. (2004). A case study on the Uranium tailings dam of Poços de Caldas uranium mining and milling site. IAEA-TECDOC—1403.

  • Fordyce, F. M., Everett, P. A., Bearcock, J. M., & Lister, T. R. (2019). Soil metal/metalloid concentrations in the Clyde Basin, Scotland, UK: Implications for land quality. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 108, 191–216. https://doi.org/10.1017/S1755691018000282

    Article  CAS  Google Scholar 

  • Fosu-Mensah, B. Y., Ofori, A., Ofosuhene, M., Ofori-Attah, E., Nunoo, F. E., Darko, G., Tuffor, I., Gordon, C., Arhinful, D. K., Nyarko, A. K., & Appiah-Opong, R. (2018). Assessment of heavy metal contamination and distribution in surface soils and plants along the West Coast of Ghana. West African Journal of Applied Ecology, 26, 167–178

    Google Scholar 

  • Hadzi, G. Y., Ayoko, G. A., Essumang, D. K., & Osae, S. K. D. (2019). Contamination impact and human health risk assessment of heavy metals in surface soils from selected major mining areas in Ghana. Environmental Geochemical Health, 41, 2821–2843. https://doi.org/10.1007/s10653-019-00332-4

    Article  CAS  Google Scholar 

  • Indústrias Nucleares do Brasil (INB). INB Caetité - Unidade de Concentrado de Urânio [online]. Rio de Janeiro: Indústrias Nucleares do Brasil, 2020 [viewed: March 09th, 2020]. Available from: http://www.inb.gov.br/pt-br/A-INB/Onde-estamos/Caetit%C3%A9.

  • Instituto Brasileiro de Mineração (IBRAM). Relatório Anual das Atividades Janeiro 2019- Dezembro de 2019. Brasília: IBRAM, 2020.

  • Instituto de Pesquisas Energéticas e Nucleares (IPEN). Reator de pesquisas IEA-R1 [online]. São Paulo: Instituto de Pesquisas Energéticas e Nucleares, 2020 [viewed: March, 16th, 2020]. Available from: https://www.ipen.br/portal_por/portal/interna.php?secao_id=729.

  • International Atomic Energy Agency (IAEA). Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications. Volume 1: Recommended Decay Data, High Energy Gamma Ray Standards and Angular Correlation Coefficients. Vienna: IAEA, 2007.

  • International Atomic Energy Agency (IAEA). Environmental Contamination from Uranium Production Facilities and their Remediation. Vienna: IAEA, 2005.

  • International Organization For Standardization (ISO). Soil Quality. Extraction of Trace Elements Soluble in Aqua Regia. ISO 11466, 1995.

  • International Union of Pure and Applied Chemistry (IUPAC). (1978). Analytical chemistry division. Commission on spectrochemical and optical procedure for analysis. Nomenclature, symbols, units and their usage in spectrochemical analysis—II. data interpretation Analytical chemistry division. Spectrochimica Acta Part B: Atomic Spectroscopy, 33(6), 241–245.

  • Järup, L. (2003). Hazard of heavy metal contamination. British Medical Bulletin, 68, 167–182. https://doi.org/10.1093/bmb/ldg032

    Article  Google Scholar 

  • Jiang, S. Y., Wang, R. C., Xu, X. S., & Zhao, K. D. (2005). Mobility of high field strength elements (HFSE) in magmatic-, metamorphic-, and submarine-hydrothermal systems. Physics and Chemistry of the Earth, Parts A/B/C, 30, 1020–1029. https://doi.org/10.1016/j.pce.2004.11.004

    Article  Google Scholar 

  • Jinxia, L., Mei, H., Xiuqin, Y., & Jiliang, L. (2010). Effects on the accumulation of the rare earth elements on soil macrofauna community. Journal of Rare Earths, 28, 957–965. https://doi.org/10.1016/S1002-0721(09)60233-7

    Article  CAS  Google Scholar 

  • Keshavarzi, A., & Kumar, V. (2019). Ecological risk assessment and source apportionment of heavy metal contamination in agricultural soils of Northeastern Iran. International Journal of Environmental Health Research, 29, 544–560. https://doi.org/10.1080/09603123.2018.1555638

    Article  CAS  Google Scholar 

  • Kumar, A., Narang, S., Mehra, R., & Singh, S. (2017). Assessment of radon concentration and heavy metal contamination in groundwater samples from some areas of Fazilka district, Punjab, India. Indoor and Built Environment, 26, 368–374. https://doi.org/10.1177/1420326X15591639.

    Article  CAS  Google Scholar 

  • Largo Resources Ltd. Maracás Menchen Mine [online]. Toronto: Largo Resources, 2020 [viewed: March, 11th, 2020]. Available: https://www.largoresources.com/operations/maracas-menchen-mine/default.aspx

  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468–469, 843–853. https://doi.org/10.1016/j.scitotenv.2013.08.090

    Article  CAS  Google Scholar 

  • Ling, Q., Dong, F., Yang, G., Han, Y., Nie, X., Zhang, W., & Zong, M. (2019). Spatial distribution and environmental risk assessment of heavy metal identified in soil of a decommissioned uranium mining area. Human and Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2019.1630601

    Article  Google Scholar 

  • Lobato, L. M., Pimentel, M. M., Cruz, S. C., Machado, N., Noce, C. M., & Alkmim, F. F. (2015). U-Pb geochronology of the Lagoa real uranium district, Brazil: Implications for the age of the uranium mineralization. Journal of South American Earth Sciences, 58, 129–140. https://doi.org/10.1016/j.jsames.2014.12.005

    Article  CAS  Google Scholar 

  • Lyu, S., Wei, X., Chen, J., Wang, C., Wang, X., & Pan, D. (2017). Titanium as a beneficial element for crop production. Frontiers in Plant Sciences, 8, 597. https://doi.org/10.3389/fpls.2017.00597

    Article  Google Scholar 

  • Machado, G. D. S. (2008). Geologia da porção sul do complexo Lagoa Real. Caetité-BA. Instituto de Geociências da Universidade Federal da Bahia.

    Google Scholar 

  • Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin. Colombia. Environmental Research, 154, 380–388. https://doi.org/10.1016/j.envres.2017.01.021

    Article  CAS  Google Scholar 

  • Mughabghab, S. F. (2003). Thermal neutron capture cross sections resonance integrals and g-factors. International Nuclear Data Committee-IAEA.

  • Pascholati, E. M., Da Silva, C. L., Costa, S. D. S., Osako, L. S., Amaral, G., & Rodriguez, I. P. (2003). Novas ocorrências de urânio na região de lagoa real, a partir da superposição de dados geofísicos, geológicos e de sensoriamento remoto. Revista Brasileira de Geociências, 33, 91–98

    Article  Google Scholar 

  • Planejamento Ambiental e Arquitetura Ltda (PLANARQ). Estudo de Impactos Ambientais: Unidade de Concentrado de Urânio em Caetité. Indústrias Nucleares do Brasil (INB). Salvador, Bahia: 1997.

  • Railsback, L. B. (2003). An earth scientist’s periodic table of the elements and their ions. Geology, 31, 737–740. https://doi.org/10.1130/G19542.1

    Article  CAS  Google Scholar 

  • Reyes, A., Thiombane, M., Panico, A., Daniele, L., Lima, A., Di Bonito, M., & De Vivo, B. (2019). Source patterns of potentially toxic elements (PTEs) and mining activity contamination level in soils of Taltal city (northern Chile). Environmental Geochemistry Health. https://doi.org/10.1007/s10653-019-00404-5

    Article  Google Scholar 

  • Rudnick RL, Gao S (2014) Composition of the continental crust. In: Treatise on geochemistry. Holland H, Turekian K, (pp. 1–51), Elsevier, Berlin

  • Shah, M. H., Ilyas, A., Akhter, G., & Bashir, A. (2019). Pollution assessment and source apportionment of selected metals in rural (Bagh) and urban (Islamabad) farmlands, Pakistan. Environmental Earth Sciences, 78, 189. https://doi.org/10.1007/s12665-019-8198-z

    Article  CAS  Google Scholar 

  • Shi, T., Ma, J., Wu, X., Ju, T., Lin, X., Zhang, Y., Li, X., Gong, Y., Hou, H., Zhao, L., & Wu, F. (2018). Inventories of heavy metal inputs and outputs to and from agricultural soils: A review. Ecotoxicology and Environmental Safety, 164, 118–124. https://doi.org/10.1016/j.ecoenv.2018.08.016

    Article  CAS  Google Scholar 

  • Sungur, A., Soylak, M., Yilmaz, E., Yilmaz, S., & Ozcan, H. (2015). Characterization of heavy metal fractions in agricultural soils by sequential extraction procedure: The relationship between soil properties and heavy metal fractions. Soils and Sediment Contamination: An International Journal, 24, 1–15. https://doi.org/10.1080/15320383.2014.907238

    Article  CAS  Google Scholar 

  • Tchounwou, P.B.; Yedjou C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. in: LUCH, A. (Ed.). Molecular, Clinical and Environmental Toxicology. 1st ed. Basel: Springer, 2012. Vol. 3, cap. 6, p. 133-164. DOI: https://doi.org/10.1007/978-3-7643-8340-4_6.

  • Tomlinson, D. C., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy metals levels in estuaries and the formation of a pollution index. Helgolander Meeresunters, 33, 566–575. https://doi.org/10.1007/BF02414780

    Article  Google Scholar 

  • United States Environmental Protection Agency (USEPA). Soil sampling quality assurance user’s guideEPA 600/8–89/046. 2nd ed. Washington-DC: USEPA, 1989a.

  • United States Environmental Protection Agency (USEPA). Regional Screening Level Summary Table [online]. Washington D.C.: United States Environmental Protection Agency, 2019 [viewed: March 24th, 2020]. Available from: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

  • Van Zyl Dirk, J.A.; Straskraba, V. (1999). Mine closure considerations in arid and semi-arid areas. Mine, water and environment. IMWA Congress.

  • Wang, L., & Liang, T. (2015). Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou China. Scientific Reports, 5, 12483. https://doi.org/10.1038/srep12483

    Article  Google Scholar 

  • Wang, Z., Qin, H., & Liu, X. (2019). Health risk assessment of heavy metals in the soil-water-rice system around the Xiazhuang uranium mine China. Environmental Science and Pollution Research, 26, 5904–5912. https://doi.org/10.1007/s11356-018-3955-1

    Article  CAS  Google Scholar 

  • World Information Service on Energy (WISE) – URANIUM PROJECT. Chronology of major tailings dam failure [online]. Arnsdorf, Germany: Peter Diehl, 2019 [viewed: March 6th, 2020]. Available from: http://www.wise-uranium.org/mdaf.html

  • Wu, W., Wu, P., Yang, F., Sun, D., Zhang, D., & Zhou, Y. (2018). Assessment of heavy metal pollution and human health risk in urban soils around an electronics manufacturing facility. Science of the Total Environment, 630, 53–61. https://doi.org/10.1016/j.scitotenv.2018.02.183

    Article  CAS  Google Scholar 

  • Zahn, G. S., Junqueira, L. S., & Genezini, F. A. (2019). CAX and Xsel: A software bundle to aid in automating NAA spectrum analysis. Brazilian Journal of Radiation Sciences. https://doi.org/10.15392/bjrs.v7i2A.565

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded in part by the Coordination of Improvement of Higher Education Personnel – Brazil (CAPES) and by the State University of Santa Cruz (UESC), Bahia—Brazil. The authors would like to thank the staff of the Research Reactor Center (CRPq) belonging to the Nuclear and Energy Research Institute (IPEN), for the technological support and the Research Laboratory in Analytical Chemistry (LPQA) of the UESC for the logistic support provided for the ICP OES analysis. We appreciate the contribution (maps elaboration) of Romario Oliveira de Santana, a Ph.D. PRODEMA-UESC student. Finally, we would like to thank all the colleagues of the Center for Research in Radiation Sciences and Technologies (CPqCTR) for their support in carrying out this work.

Funding

The research funders were already mentioned in the acknowledgments. All authors certify that they have no financial interest in the subject or the materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Diango M. Montalván Olivares was involved in substantial contributions to conception and design of the study, acquisition of data, analysis and interpretation of data, drafting the article and critical review. Caroline Santana contributed to acquisition and analysis of data, drafting the article. Fermin Garcia Velasco helped in contributions to conception of the study, critical review of important intellectual content, final approval of the version to be submitted for publication. Francisco H. Martinez Luzardo was involved in contributions to conception of the study, drafting the article and critical review of important intellectual content. Sergio Fred Ribeiro Andrade helped in acquisition of data. Regina Beck Ticianelli contributed to analysis and interpretation of data. Maria Jose Armelin helped in analysis and interpretation of data. Frederico Genezini was involved in critical review of important intellectual content, final approval of the version to be submitted for publication. All authors agreed to publish the manuscript respecting the current sequence of authors listed. Likewise, all authors agreed to designate Diango M. Montalván as the corresponding author of the submission.

Corresponding author

Correspondence to D. M. Montalván-Olivares.

Ethics declarations

Human or animal rights

Since this study did not involve human and animal research, no consents were required to participate and/or publish biological material or data belonging to humans and/or animals. Therefore, the inclusion of these forms and other ethical issues related to the publication of this type of data do not apply to this study

Consent for publish

AAll authors agree to publish the manuscript respecting the current sequence of authors listed. Likewise, all authors agreed to designate Diango M. Montalván as the corresponding author of the submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file3 (DOCX 466 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montalván-Olivares, D.M., Santana, C.S., Velasco, F.G. et al. Multi-element contamination in soils from major mining areas in Northeastern of Brazil. Environ Geochem Health 43, 4553–4576 (2021). https://doi.org/10.1007/s10653-021-00934-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00934-x

Keywords

Navigation