Skip to main content
Log in

Characteristics, sources and health risk assessment of toxic heavy metals in PM2.5 at a megacity of southwest China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Twenty trace elements in fine particulate matters (i.e., PM2.5) at urban Chengdu, a southwest megacity of China, were determined to study the characteristics, sources and human health risk of particulate toxic heavy metals. This work mainly focused on eight toxic heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn). The average concentration of PM2.5 was 165.1 ± 84.7 µg m−3 during the study period, significantly exceeding the National Ambient Air Quality Standard (35 µg m−3 in annual average). The particulate heavy metal pollution was very serious in which Cd and As concentrations in PM2.5 significantly surpassed the WHO standard. The enrichment factor values of heavy metals were typically higher than 10, suggesting that they were mainly influenced by anthropogenic sources. More specifically, the Cr, Mn and Ni were slightly enriched, Cu was highly enriched, while As, Cd, Pb and Zn were severely enriched. The results of correlation analysis showed that Cd may come from metallurgy and mechanical manufacturing emissions, and the other metals were predominately influenced by traffic emissions and coal combustion. The results of health risk assessment indicated that As, Mn and Cd would pose a significant non-carcinogenic health risk to both children and adults, while Cr would cause carcinogenic risk. Other toxic heavy metals were within a safe level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bell, M. L., Ebisu, K., Peng, R. D., Samet, J. M., & Dominici, F. (2009). Hospital admissions and chemical composition of fine particle air pollution. American Journal of Respiratory and Critical Care Medicine, 179, 1115–1120.

    Article  CAS  Google Scholar 

  • Bellinger, D. C. (2005). Teratogen update: lead and pregnancy. Birth Defects Research, Part A: Clinical and Molecular Teratology, 73(6), 409–420.

    Article  CAS  Google Scholar 

  • Diaz, R. V., & Dominguez, E. R. (2009). Health risk by inhalation of PM2.5 in the metropolitan zone of the city of Mexico. Ecotoxicology and Environmental Safety, 72(3), 866–871.

    Article  CAS  Google Scholar 

  • Dubey, B., Pal, A. K., & Singh, G. (2012). Trace metal composition of airborne particulate matter in the coal mining and non-mining areas of Dhanbad Region, Jharkhand, India. Atmospheric Pollution Research, 3, 238–246.

    Article  CAS  Google Scholar 

  • Gao, Y. R., Arimoto, R., Duce, R. A., Lee, D. S., & Zhou, M. Y. (1992). Input of atmospheric trace elements and mineral matter to the Yellow Sea during the spring of a low-dust year. Journal of Geophysical Research: Atmospheres (1984–2012), 97(D4), 3767–3777.

    Article  CAS  Google Scholar 

  • Gao, J. J., Tian, H. Z., Cheng, K., Lu, L., Wang, Y. X., Wu, Y., et al. (2014). Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of Beijing, China: mass concentration, enrichment characteristics, source apportionment, chemical speciation and bioavailability. Atmospheric Environment, 99, 257–265.

    Article  CAS  Google Scholar 

  • Garza, A., Vega, R., & Soto, E. (2006). Cellular mechanisms of lead neurotoxicity. Medical Science Monitor, 12(3), RA57–RA65.

    Google Scholar 

  • Greene, N. A., & Morris, V. R. (2006). Assessment of public health risks associated with atmospheric exposure to PM2.5 in Washington, DC, USA. International Journal of Environmental Research and Public Health, 3(1), 86–97.

    Article  CAS  Google Scholar 

  • Gu, J. X., Du, S. Y., Han, D. W., Hou, L. J., Yi, J., Xu, J., et al. (2014). Major chemical compositions, possible sources, and mass closure analysis of PM2.5 in Jinan, China. Air Quality, Atmosphere and Health, 7, 251–262.

    Article  CAS  Google Scholar 

  • Han, Y. J., Kim, H. W., Cho, S. H., Kim, P. R., & Kim, W. J. (2015). Metallic elements in PM2.5 in different functional areas of Korea: concentrations and source identification. Atmospheric Research, 153, 416–428.

    Article  CAS  Google Scholar 

  • Hu, X., Zhang, Y., Ding, Z. H., Wang, T. J., Lian, H. Z., Sun, Y. Y., et al. (2012). Bioaccessibility and health risk of arsenic and heavy metals (Cd Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmospheric Environment, 57, 146–152.

    Article  CAS  Google Scholar 

  • Huang, W., Cao, J. J., Tao, Y. B., Dai, L. Z., Lu, S. E., Hou, B., et al. (2012). Seasonal variation of chemical species associated with short-term mortality effects of PM2.5 in Xi’an, a central city in China. American Journal of Epidemiology, 175(6), 556–566.

    Article  Google Scholar 

  • Jarup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167–182.

    Article  Google Scholar 

  • Johansson, C., Norman, M., & Burman, L. (2009). Road traffic emission factors for heavy metals. Atmospheric Environment, 43, 4681–4688.

    Article  CAS  Google Scholar 

  • Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151(2), 362–367.

    Article  CAS  Google Scholar 

  • Khodeir, M., Shamy, M., Alghamdi, M., Zhong, M. H., Sun, H., Costa, M., et al. (2012). Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia. Atmospheric. Pollution Research, 3(3), 331–340.

    CAS  Google Scholar 

  • Kim, J. Y., Kim, K. W., Ahn, J. S., Ko, I., & Lee, C. H. (2005). Investigation and risk assessment modeling of As and other heavy metals contamination around five abandoned metal mines in Korea. Environmental Geochemistry and Health, 27(2), 193–203.

    Article  CAS  Google Scholar 

  • Kulshrestha, A., Satsangi, P. G., Masih, J., & Taneja, A. (2009). Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Science of the Total Environment, 407, 6196–6204.

    Article  CAS  Google Scholar 

  • Li, P. H., Kong, S. F., Geng, C. M., Han, B., Lu, B., Sun, R. F., et al. (2013). Assessing the hazardous risks of vehicle inspection workers’ exposure to particulate heavy metals in their work places. Aerosol and Air Quality Research, 13(1), 255–265.

    Google Scholar 

  • Massey, D. D., Kulshrestha, A., & Taneja, A. (2013). Particulate matter concentrations and their related metal toxicity in rural residential environment of semi-arid region of India. Atmospheric Environment, 67, 278–286.

    Article  CAS  Google Scholar 

  • Olson, D. A., Turlington, J., Duvall, R. M., McDow, S. R., Stevens, C. D., & Williams, R. (2008). Indoor and outdoor concentrations of organic and inorganic molecular markers: source apportionment of PM2.5 using low-volume samples. Atmospheric Environment, 42, 1742–1751.

    Article  CAS  Google Scholar 

  • Paatero, P., Hopke, P. K., Begum, B. A., & Biswas, S. K. (2005). A graphical diagnostic method for assessing the rotation in factor analytical models of atmospheric pollution. Atmospheric Environment, 39, 193–201.

    Article  CAS  Google Scholar 

  • Park, E. J., Kim, D. S., & Park, K. (2008). Monitoring of ambient particles and heavy metals in a residential area of Seoul, Korea. Environmental Monitoring and Assessment, 137(1–3), 441–449.

    Article  CAS  Google Scholar 

  • Pope, C. A. (2000). Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk? Environmental Health Perspectives, 108(4), 713–722.

    Article  CAS  Google Scholar 

  • Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., et al. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Journal of American Medical Association, 287(9), 1132–1141.

    Article  CAS  Google Scholar 

  • Smichowski, P., Gomez, D. R., Dawidowski, L. E., Gine, F. M., Bellato, A. C., & Reich, S. L. (2004). Monitoring trace metals in urban aerosols from Buenos Aires city. Determination by plasma-based techniques. Journal of Environmental Monitoring, 6(4), 286–294.

    Article  CAS  Google Scholar 

  • Song, Y., Xie, S. D., Zhang, Y. H., Zeng, L. M., Salmon, L. G., & Zheng, M. (2006). Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. Science of the Total Environment, 372, 278–286.

    Article  CAS  Google Scholar 

  • Sun, Y. Y., Hu, X., Wu, J. C., Lian, H. Z., & Chen, Y. J. (2014). Fractionation and health risks of atmospheric particle-bound As and heavy metals in summer and winter. Science of the Total Environment, 493, 487–494.

    Article  CAS  Google Scholar 

  • Sun, Y. B., Zhou, Q. X., Xie, X. K., & Liu, R. (2010). Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. Journal of Hazard Material, 174(1–3), 455–462.

    Article  CAS  Google Scholar 

  • Tan, J. H., Duan, J. H., Ma, Y. L., Yang, F. M., Cheng, Y., He, K. B., et al. (2014). Source of atmospheric heavy metals in winter in Foshan, China. Science of the Total Environment, 493, 262–270.

    Article  CAS  Google Scholar 

  • Tang, W. C., Jin, L. X., & Zhou, X. M. (2005). The research and implications of Chengdu’s soil element geochemical reference value. Geophysical and Geochemical Exploration, 29(1), 71–83.

    CAS  Google Scholar 

  • Tao, J., Zhang, L. M., Engling, G., Zhang, R. J., Yang, Y. H., Cao, J. J., et al. (2013). Chemical composition of PM2.5 in an urban environment in Chengdu, China: importance of springtime dust storms and biomass burning. Atmospheric Research, 122, 270–283.

    Article  CAS  Google Scholar 

  • Thomaidis, N. S., Bakeas, E. B., & Siskos, P. A. (2003). Characterization of lead, cadmium, arsenic and nickel in PM2.5 particles in the Athens atmosphere, Greece. Chemosphere, 52(6), 959–966.

    Article  CAS  Google Scholar 

  • Tian, H. Z., Lu, L., Cheng, K., Hao, J. M., Zhao, D., Wang, Y., et al. (2012). Anthropogenic atmospheric nickel emissions and its distribution characteristics in China. Science of the Total Environment, 417, 148–157.

    Article  Google Scholar 

  • Tian, H. Z., Wang, Y., Xue, Z. G., Qu, Y. P., Chai, F. H., & Hao, J. M. (2011). Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007. Science of the Total Environment, 409, 3078–3081.

    Article  CAS  Google Scholar 

  • Wang, X. H., Bi, X. H., Sheng, G. Y., & Fu, J. M. (2006). Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China. Environmental Monitoring and Assessment, 119(1–3), 425–439.

    Article  CAS  Google Scholar 

  • Wang, Q. Y., Cao, J. J., Shen, Z. J., Tao, J., Xiao, S., Luo, L., et al. (2013a). Chemical characteristics of PM2.5 during dust storms and air pollution events in Chengdu, China. Particuology, 11(1), 70–77.

    Article  CAS  Google Scholar 

  • Wang, J., Hu, Z. M., Chen, Y. Y., Chen, Z. L., & Xu, S. Y. (2013b). Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China. Atmospheric Environment, 68, 221–229.

    Article  CAS  Google Scholar 

  • Xia, L. L., & Gao, Y. (2011). Characterization of trace elements in PM2.5 aerosols in the vicinity of highways in northeast New Jersey in the U.S. east coast. Atmospheric. Pollution Research, 2(1), 34–44.

    CAS  Google Scholar 

  • Xu, H. M., Cao, J. J., Ho, K. F., Ding, H., Han, Y. M., Wang, G. H., et al. (2012). Lead concentrations in fine particulate matter after the phasing out of leaded gasoline in Xi’an, China. Atmospheric Environment, 46, 217–224.

    Article  CAS  Google Scholar 

  • Yadav, S., & Satsangi, P. G. (2013). Characterization of particulate matter and its related metal toxicity in an urban location in South West India. Environmental Monitoring and Assessment, 185, 7365–7379.

    Article  CAS  Google Scholar 

  • Yang, F., Tan, J., Zhao, Q., Du, Z., He, K., Ma, Y., et al. (2011). Characteristics of PM2.5 speciation in representative megacities and across China. Atmospheric Chemistry and Physics, 11(11), 5207–5219.

    Article  CAS  Google Scholar 

  • Yang, Y. J., Wang, Y. S., Wan, T. X., Li, W., Zhao, Y. N., & Li, L. (2009). Elemental composition of PM2.5 and PM10 at Mount Gongga in China during 2006. Atmospheric Research, 93(4), 801–810.

    Article  CAS  Google Scholar 

  • Zhang, N., Han, B., He, F., Xu, J., Niu, C., Zhou, J., et al. (2014). Characterization, health risk of heavy metals, and source apportionment of atmospheric PM2.5 to children in summer and winter: an exposure panel study in Tianjin, China. Air Quality, Atmosphere and Health,. doi:10.1007/s11869-014-0289-0.

    Google Scholar 

  • Zhou, S. Z., Yuan, Q., Li, W. J., Lu, Y. L., Zhang, Y. M., & Wang, W. X. (2014). Trace metals in atmospheric fine particles in one industrial urban city: spatial variations, sources, and health implications. Journal of Environmental Sciences, 26(1), 205–213.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province (CSPC2014-4-2) and Science and Technology Department of Sichuan Province (2015JY0094). We would like to thank Dr. Jun Tao from South China Institute of Environmental Sciences, Ministry of Environmental Protection for his assistance in field sampling and laboratory analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youping Li or Zhisheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, Z., Liu, H. et al. Characteristics, sources and health risk assessment of toxic heavy metals in PM2.5 at a megacity of southwest China. Environ Geochem Health 38, 353–362 (2016). https://doi.org/10.1007/s10653-015-9722-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9722-z

Keywords

Navigation