Skip to main content

Advertisement

Log in

Tracing the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain, India: a source identification perspective

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Arsenic contamination in groundwater is of increasing concern because of its high toxicity and widespread occurrence. This study is an effort to trace the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain of India through major ion chemistry, arsenic speciation, sediment grain-size analyses, and multivariate statistical techniques. The study focuses on the distinction between the contributions of natural weathering and anthropogenic inputs of arsenic with its spatial distribution and seasonal variations in the plain of the state Bihar of India. Thirty-six groundwater and one sediment core samples were collected in the pre-monsoon and post-monsoon seasons. Various graphical plots and statistical analysis were carried out using chemical data to enable hydrochemical evaluation of the aquifer system based on the ionic constituents, water types, hydrochemical facies, and factors controlling groundwater quality. Results suggest that the groundwater is characterized by slightly alkaline pH with moderate to strong reducing nature. The general trend of various ions was found to be Ca2+ > Na+ > Mg2+ > K+ > NH4 +; and HCO3  > Cl > SO4 2− > NO3  > PO4 3− > F in both seasons. Spatial and temporal variations showed a slightly higher arsenic concentration in the pre-monsoon period (118 μg/L) than in the post-monsoon period (114 μg/L). Results of correlation analyses indicate that arsenic contamination is strongly associated with high concentrations of Fe, PO4 3−, and NH4 + but relatively low Mn concentrations. Further, the enrichment of arsenic is more prevalent in the proximity of the Ganges River, indicating that fluvial input is the main source of arsenic. Grain size analyses of sediment core samples revealed clay (fine-grained) strata between 4.5 and 7.5 m deep that govern the vertical distribution of arsenic. The weathering of carbonate and silicate minerals along with surface-groundwater interactions, ion exchange, and anthropogenic activities seem to be the processes governing groundwater contamination, including with arsenic. Although the percentage of wells exceeding the permissible limit (50 μg/L) was less (47%) than that reported in Bangladesh and West Bengal, the percentage contribution of toxic As(III) to total arsenic concentration is quite high (66%). This study is vital considering that groundwater is the exclusive source of drinking water in the region and not only makes situation alarming but also calls for immediate attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acharyya, S. K. (2004). Arsenic levels in groundwater from quaternary alluvium in the Ganga Plain and the Bengal basin, Indian subcontinent: Insights into influence of stratigraphy. Gondwana Research, 8(1), 55–66. doi:10.1016/S1342-937X(05)70262-8.

    Article  Google Scholar 

  • Acharyya, S. K., & Shah, B. A. (2004). Risk of arsenic contamination in groundwater affecting Ganga alluvial Plain, India? Environmental Health Perspectives, 112, A19–A20.

    Article  Google Scholar 

  • Ahmed, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Alam, M. A., Bhuyian, H., et al. (2004). Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: An overview. Applied Geochemistry, 19, 181–200. doi:10.1016/j.apgeochem.2003.09.006.

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA). (1995). Standard methods for the examination of water and wastewater (19th ed., 1467 pp.). Washington DC: American Public Health Association.

  • Ben, D. S., Berner, Z., Chandrasekharam, D., & Karmakar, J. (2003). Arsenic enrichment in groundwater of West Bengal, India: Geochemical evidence for mobilization of As under reducing conditions. Applied Geochemistry, 18, 1417–1434. doi:10.1016/S0883-2927(03)00060-X.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Chatterjee, D., & Jacks, G. (1997). Occurrence of arsenic contamination of groundwater in alluvial aquifers from Delta Plain, eastern India: Option for safe drinking supply. International Journal of Water Resources Development, 13, 79–92. doi:10.1080/07900629749944.

    Article  Google Scholar 

  • Brady, N. C., & Weil, R. R. (2002). The nature and properties of soils (13th ed.). NY: Prentice Hall.

    Google Scholar 

  • Brömssen, M. V., Jakariya, M., Bhattacharya, P., Ahmed, K. M., Hasan, M. A., Sracek, O., et al. (2007). Targeting low-arsenic aquifers in Matlab Upazila, southeastern Bangladesh. Science of the Total Environment, 379, 121–132.

    Article  CAS  Google Scholar 

  • Brömssen, M. V., Larsson, S. H., Bhattacharya, P., Hasan, M. A., Ahmed, K. M., Jakariya, M., et al. (2008). Geochemical characterisation of shallow aquifer sediments of Matlab Upazila, southeastern Bangladesh—implications for targeting low-As aquifers. Journal of Contaminant Hydrology, 99, 137–149. doi:10.1016/j.jconhyd.2008.05.005.

    Article  CAS  Google Scholar 

  • Chakraborti, D., Mukherjee, S. C., Pati, S., Sengupta, M. K., Rahman, M. M., Chowdhury, U. K., et al. (2003). Arsenic groundwater contamination in middle Ganga Plain, Bihar, India: A future danger? Environmental Health Perspectives, 111, 1194–1201.

    CAS  Google Scholar 

  • Chaurasia, O. P., Kumari, C., & Ankita, S. (2007). Genotoxic effect of ground water salts rich in fluoride. Cytologia, 72(2), 141–144.

    Article  CAS  Google Scholar 

  • Datta, D. K., & Subramanian, V. (1994). Texture and mineralogy of sediments from the Ganges–Brahmaputra–Meghna river system in the Bengal basin and their environmental implications. Environmental Geology, 30(3/4), 181–188.

    Google Scholar 

  • Domenico, P. A. (1972). Concepts and models in groundwater hydrology. New York: McGraw–Hill.

    Google Scholar 

  • Gebel, T. (2000). Confounding variables in the environmental toxicology of arsenic. Toxicology, 144, 155–162. doi:10.1016/S0300-483X(99)00202-4.

    Article  CAS  Google Scholar 

  • Griffiths, J. C. (1967). Scientific methods in analysis of sediments. New York: McGraw Hill.

    Google Scholar 

  • Harvey, C., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N. E., Yu, W., Ashraf Ali, M., et al. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298, 1602–1606.

    Article  CAS  Google Scholar 

  • Huh, Y., Tsoi, M. Y., Zaitiser, A., & Edward, J. N. (1998). The fluvial geochemistry of the river of eastern Siberia. I. Tributaries of Lena River draining the sedimentation platform of the Siberia Craton. Geochimica et Cosmochimica Acta, 62, 1657–1676. doi:10.1016/S0016-7037(98)00107-0.

    Article  CAS  Google Scholar 

  • Huq, S. M. I., Ara, Q. A. J., Islam, K., Zaher, A., & Naidu, R. (2001). The possible contamination from arsenic through food chain. In: Bhattacharya, P., Jacks, G., Khan, A. A. (eds.). Groundwater arsenic contamination in the Bengal delta Plain of Bangladesh. Proceedings of the KTH-Dhaka University Seminar (pp. 9–96). KTH Special Publication, TRITA-AMI Report 3084.

  • Jain, C. K., & Ali, I. (2000). Arsenic: Occurrence, toxicity and speciation techniques. Water Resources, 34, 4304–4312.

    CAS  Google Scholar 

  • Jakariya, M., Choudhary, M., Tareq, M. A. H., & Ahmed, J. (1998). BARC: Village health workers can test tubewell water for arsenic. Bangladesh Rural Advancement Committee. Available at: http://wso.net/wei/dch/acic/infobank.

  • Karim, M., Komori, Y., & Alam, M. (1997). Subsurface As occurrence and depth of contamination in Bangladesh. Journal of Environmental Chemistry, 7, 783–792.

    CAS  Google Scholar 

  • Kumar, M., Kumari, K., Ramanathan, A. L., & Saxena, R. (2007). A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two agriculture dominated districts of Punjab, India. Environmental Geology, 53, 553–574. doi:10.1007/s00254-007-0672-3.

    Article  CAS  Google Scholar 

  • Kumar, M., Kumari, K., Singh, U. K., Ramanathan, A. L., & Saxena, R. (2009a). Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: Conventional graphical and multivariate statistical approach. Environmental Geology, 53, 553–574. doi:10.1007/s00254-007-0672-3.

    Article  CAS  Google Scholar 

  • Kumar, M., Ramanathan, A. L., & Keshari, A. K. (2009b). Understanding the extent of interactions between groundwater and surface water through major ion chemistry and multivariate statistical techniques. Hydrological Processes, 23, 297–310.

    Article  CAS  Google Scholar 

  • Kumar, M., Ramanathan, A. L., Rao, M. S., & Kumar, B. (2006). Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environmental Geology, 50, 1025–1039. doi:10.1007/s00254-006-0275-4.

    Article  CAS  Google Scholar 

  • Kumar, M., Sharma, B., Ramanathan, A. L., Rao, M. S., & Kumar, B. (2009c). Nutrient chemistry and salinity mapping of the Delhi aquifer, India: Source identification perspective. Environmental Geology, 56, 1171–1181. doi:10.1007/s00254-008-1217-0.

    Article  CAS  Google Scholar 

  • Matthess, G. (1982). The properties of groundwater (p. 498). New York: Wiley.

    Google Scholar 

  • Mazumder, D. N. G., Haque, R., Ghosh, N., De, B. K., Santra, A., Chakraborty, D., et al. (1998). Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. International Journal of Epidemiology, 27, 871–877. doi:10.1093/ije/27.5.871.

    Article  Google Scholar 

  • McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., Mishra, R., Purohit, R., & Ravenscroft, P. (2004). Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water; the example of West Bengal and its worldwide implications. Applied Geochemistry, 19, 1255–1293. doi:10.1016/j.apgeochem.2004.02.001.

    Article  CAS  Google Scholar 

  • McArthur, J. M., Ravenscroft, P., Safiullah, S., & Thirlwall, M. F. (2001). Arsenic in groundwater: Testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resources Research, 37(1), 109–117. doi:10.1029/2000WR900270.

    Article  CAS  Google Scholar 

  • Meliker, J. R., Slotnick, M. J., Avruskin, G. A., Haack, S. K., & Nriagu, J. O. (2008). Influence of groundwater recharge and well characteristics on dissolved arsenic concentrations in southeastern Michigan groundwater. Environmental Geochemistry and Health,. doi:10.1007/s10653-008-9173-x.

  • Nickson, R. T., McArthur, J. M., Burgess, W. G., Ahmed, K. M., Ravenscroft, P., & Rahman, M. (1998). Arsenic poisoning of Bangladesh groundwater. Nature, 395, 338. doi:10.1038/26387.

    Article  CAS  Google Scholar 

  • Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15, 403–413. doi:10.1016/S0883-2927(99)00086-4.

    Article  CAS  Google Scholar 

  • Nickson, R., Sengupta, C., Mitra, P., Dave, S. N., Banerjee, A. K., Bhattacharya, A., et al. (2007). Current knowledge on the distribution of arsenic in groundwater in five states of India. Journal of Environmental Science and Health Part A, 42, 1707–1718. doi:10.1080/10934520701564194.

    Article  CAS  Google Scholar 

  • Ravenscroft, P., Burgess, W. G., Ahmed, K. M., Burren, M., & Perrin, J. (2005). Arsenic in groundwater of the Bengal basin, Bangladesh: Distribution, field relations, and hydrological setting. Hydrogeology Journal, 13, 727–751. doi:10.1007/s10040-003-0314-0.

    Article  CAS  Google Scholar 

  • Saha, K. C. (1984). Melanokeratosis from arsenic contaminated tubewell water. Indian Journal of Dermatology, 29, 37–46.

    CAS  Google Scholar 

  • Saha, L. C., & Kumar, S. (2006). Comparative quality of potable waters at Bhagalpur, India. Acta Hydrochimica et Hydrobiologica, 18(4), 459–467. doi:10.1002/aheh.19900180410.

    Article  Google Scholar 

  • Shah, B. A. (2008). Role of quaternary stratigraphy on arsenic-contaminated groundwater from parts of middle Ganga Plain, UP–Bihar, India. Environmental Geology, 35, 1553–1561. doi:10.1007/s00254-007-0766-y.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568. doi:10.1016/S0883-2927(02)00018-5.

    Article  CAS  Google Scholar 

  • Smith, A. H., Lingas, E. O., & Rahman, M. (2000). Contamination of drinking water by arsenic in Bangladesh: A public health emergency. Bulletin of the World Health Organization, 83, 177–186.

    Google Scholar 

  • Todd, D. K. (1959). Ground water hydrology. Singapore: Wiley.

    Google Scholar 

  • WHO. (1993). Guidelines for drinking water quality. Recommendation edn, vol. 1–2. World Health Organization Geneva.

Download references

Acknowledgments

First author (PK) would like to thank Indian Council of Medical Research (ICMR), Government of India, for giving a fellowship and grant for my research work. The authors also acknowledge the Department of Science and Technology (DST), under the Government of India for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P., Kumar, M., Ramanathan, A.L. et al. Tracing the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain, India: a source identification perspective. Environ Geochem Health 32, 129–146 (2010). https://doi.org/10.1007/s10653-009-9270-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-009-9270-5

Keywords

Navigation