Skip to main content
Log in

Metal bioaccumulation and its genotoxic effects on eggs and hatchlings of giant Amazon river turtle (Podocnemis expansa)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The aim of this study was to assess whether possible metal contamination in the sediment of the nests of giant Amazon river turtle, Podocnemis expansa, could contaminate eggs and hatchlings, triggering genotoxic damage. Therefore, sediments of P. expansa nests from two sites in the Brazilian Amazon were evaluated, with the first being collected at Araguaia River and the second at Crixás-Açu River. Newly hatched offspring, eggs, and sediments were collected from the beaches of these two rivers and the quantification of metals (Al, Cd, Co, Cr, Cu, Fe, Mn, Pb, and Zn) was carried out by atomic absorption spectroscopy. All targeted metals were found in both sediment and P. expansa biological samples collected on the beaches presenting higher concentrations in the sediment of Crixás-Açu River. Metals found in the eggshells before nesting and in the egg contents were maternally transferred. Moreover, augmented concentration of metals led by metal transfer from the nests sediments were detected in the eggshells after nesting (ENH) and in the newly hatched offspring (H). Probably this metal relocation to the newly hatchlings augmented the frequency of micronuclei in their blood, presenting 15.25‰ in hatchling found in Crixás-Açu River beaches and 10‰ in newly hatched animals from Araguaia River beaches. These results indicate the occurrence of maternal transfer of metals (essential or not) to the eggs in testudines as well as a transference from the sediments to the nesting eggs, triggering genotoxic effects on the hatchlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data will be available under request.

References

  • Agusa T, Takagi K, Iwata H, Tanabe S (2008) Arsenic species and their accumulation features in green turtles (Chelonia mydas). Mar Pollut Bull 57(6–12):782–789. https://doi.org/10.1016/j.marpolbul.2008.01.010

    Article  CAS  Google Scholar 

  • Andreani G, Santoro M, Cottignoli S, Fabbri M, Carpenè E, Isani G (2008) Metal distribution and metallothionein in loggerhead (Caretta caretta) and green (Chelonia mydas) sea turtles. Sci Total Environ 390:287–294. https://doi.org/10.1016/j.scitotenv.2007.09.014

    Article  CAS  Google Scholar 

  • Barraza AD, Komoroske LM, Allen C, Eguchi T, Gossett R, Holland E, Lawson DD, LeRoux RA, Long A, Seminoff JA, Lowe CG (2019) Trace metals in green sea turtles (Chelonia mydas) inhabiting two southern California coastal estuaries. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.01.107

  • Burger J (1976) Behavior of hatchling diamonback terrapins (Malaclemys terrapin) in the field. Copeia 4:742–748. https://doi.org/10.2307/1443457

  • Burger J, Campbell KR, Murray R, Campbell TS, Gaines KF, Jeitner C, Shukla T, Burke S, Gochfeld M (2007) Metal levels in blood, muscle and liver of water snakes (Nerodia spp.) from New Jersey, Tennessee and South Carolina. Sci Total Environ 373(2/3):556–563. https://doi.org/10.1016/j.scitotenv.2006.06.018

    Article  CAS  Google Scholar 

  • Burger J, Gibbons JW (1998) Trace elements in egg contents and egg shells of slider turtles (Trachemys scripta) from the Savannah River site. Arch Environ Contam Toxicol 34:382–386. https://doi.org/10.1007/s002449900334

    Article  CAS  Google Scholar 

  • Burger J, Gochfeld M (1991) Cadmium and lead in common terns (Aves Sterna-Hirundo) relationship between levels in parents and eggs. Environ Monit Assess 16:253–258. https://doi.org/10.1007/BF00397612

    Article  CAS  Google Scholar 

  • Burger J, Jeitner C, Schneider L, Vogt RC, Gochfeld M (2010) Arsenic, Cadmium, Chromium, Lead, Mercury, and Selenium levels in blood of four species of turtles from the Amazon in Brazil. J Toxicol Environ Health Part A 73:33–40. https://doi.org/10.1080/15287390903248877

    Article  CAS  Google Scholar 

  • Brasil (1998) Decreto de 2 de outubro de 1998. Dispõe sobre a criação da Área de Proteção Ambiental dos Meandros do rio Araguaia nos Estados de Goiás, Mato Grosso e Tocantins e dá outras providências. Diário oficial da República Federativa do Brasil, Brasília, p 4

    Google Scholar 

  • Castro PTA, Ferreira Júnior PD (2008) Caracterização ecogeomorfológica das áreas de desova de quelônios de água doce (gênero Podocnemis) no entorno da ilha do bananal, rio Araguaia. Geografias Artigo Científicos 04:15–22

    Google Scholar 

  • Chovanec A, Hofer R, Schiemer F (2003) Fish as bioindicators. J Trace Elem Med Biol 6:639–676

    CAS  Google Scholar 

  • Eisler R (1988) Lead hazards to fish, wildlife, and invertebrates: a synoptic review. US Fish and Wildlife Service. Biol Rep 85:1–14

    Google Scholar 

  • Ernst CH, Barbour RW (1989) Turtles of the world. Smithsonian Institution, Washington and London, p 313

    Google Scholar 

  • Esposito M, Roma AD, Sansone D, Capozzo D, Iaccarino D, Nocera F, Gallo P (2020) Non-essential toxic element (Cd, As, Hg and Pb) levels in muscle, liver and kidney of loggerhead sea turtles (Caretta caretta) stranded along the southwestern coasts of Tyrrhenian sea. Comp Biochem Physiol C Toxicol https://doi.org/10.1016/j.cbpc.2020.108725

  • Fairbrother A, Wenstel R, Sappington K, Wood W (2007) Framework for metals risk assessment. Ecotoxicol Environ Saf 68:145–227. https://doi.org/10.1016/j.ecoenv.2007.03.015

    Article  CAS  Google Scholar 

  • Ferreira Júnior PD, Castro PTA (2006) Características geológicas das áreas de nidificação da tartaruga-da Amazônia (Podocnemis expansa) no rio Crixás-Açu no Estado de Goiás. Brasil. Acta Amazon. 36:249–258. https://doi.org/10.1590/S0044-59672006000200015

    Article  Google Scholar 

  • Fenech M (2000) The in vitro micronucleus technique. Mut Res 455:81–95. https://doi.org/10.1016/S0027-5107(00)00065-8

    Article  CAS  Google Scholar 

  • Finkler MS (1999) Influence of water availability during incubation on hatchling size, body composition, desiccation tolerance, and terrestrial locomotor performance in the snapping turtle Chelydra serpentina. Physiol. Biochem. Zool. 72:714–722. https://doi.org/10.1086/316711

    Article  CAS  Google Scholar 

  • Frenzilli G, Nigro M, Lyons BP (2009) The Comet assay for thee valuation of genotoxic impactin aquatic environments. Mutat Res Rev Mutat Res 681:80–92. https://doi.org/10.1016/j.mrrev.2008.03.001

    Article  CAS  Google Scholar 

  • Frossard A, Ferreira PD, Carneiro MTWD, Heringer DC, Endringer OA, Gomes LC (2013) Effect of dietary cadmium on fitness, growth, genotoxicity and accumulation in the Yellowspotted River Turtle, Podocnemis unifilis. Aquat Toxicol 141:239–241. https://doi.org/10.1016/j.aquatox.2013.06.002

    Article  CAS  Google Scholar 

  • Frossard A, Leite FLG, Silva ELF, Carneiro MTWD, Gomes LC, Rossi Júnior JL, Endringer DC (2019) Snake Bothrops jararaca (Squamata: Viperiadae) is a suitable bioindicator of environmental Cadmium exposure. Ecol Indic 104:166–171. https://doi.org/10.1016/j.ecolind.2019.04.079

    Article  CAS  Google Scholar 

  • Frossard A, Carneiro MTWD, Silva ELF, Camargo-Filho CB, Rossi Jr JL (2017) Concentração de elementos traços em serpentes do litoral e da região serrana do Espírito Santo. Pesq Vet Bras 37-10:1146–1152. https://doi.org/10.1590/S0100-736X2017001000017

    Article  Google Scholar 

  • Frossard A, Vieira LV, Carneiro MTWD, Gomes LC, Chippari-Gomes AR (2020) Accumulation of trace metals in eggs and hatchlings of Chelonia mydas. J Trace Elem. Med Biol https://doi.org/10.1016/j.jtemb.2020.126654

  • Frossard A (2020) Avaliação toxicológica de metais em testudines. PhD. Thesis - Universidade Vila Velha, Vila Velha

  • Godley BJ, Thompson DR, Furness RW (1999) Do Heavy Metal Concentrations Pose Threat to Marine Turtles from the Mediterranean Sea? Mar. Pollut. Bull 38:497–502

    Article  CAS  Google Scholar 

  • Grisolia CK, Rivero CLG, Starling FLRM, Silva ICR, Barbosa AC, Dorea JG (2009) Profile of micronucleus frequencies and DNA damage in different species of fish in a eutrophic tropical lake. Genet Mol Biol 32:138–143. https://doi.org/10.1590/S1415-47572009005000009

    Article  CAS  Google Scholar 

  • Guirlet E, Das K, Girondot M (2008) Maternal transfer of trace elements in leatherback turtles (Dermochelys coriacea) of French Guiana. Aquat Toxicol 88:267–276. https://doi.org/10.1016/j.aquatox.2008.05.004

    Article  CAS  Google Scholar 

  • Guzman HM, Kaiser S, Hinsberg VJV (2019) Accumulation of trace elements in leatherback turtle (Dermochelys coriacea) eggs from the south-western Caribbean indicates potential health risks to consumers. Chemosphere 243:125424. https://doi.org/10.1016/j.chemosphere.2019.125424

    Article  CAS  Google Scholar 

  • Haskins DL, Hamilton MT, Jones AL, JWJ Finger, Bringolf RB, Tuberville TD (2017) Accumulation of coal combustion residues and their immunological effects in the yellow-bellied slider (Trachemys scripta scripta). Environ Pollut 224:810–819. https://doi.org/10.1016/j.envpol.2017.01.048

    Article  CAS  Google Scholar 

  • Henny CJ, Beal KF, Bury RB, Goggans R (2003) Organochlorine pesticides, PCBs, trace elements and metals in western pond turtle eggs from Oregon. Northwest Sci 77:46–53

    CAS  Google Scholar 

  • Hopkins WA, Roe JH, Snodgrass JW, Jackson BP, Kling DE, Rowe LC, Congdon JD (2001) Nondestructive indices of trace element exposure in squamate reptile. Environ Pollut 115:1–7

  • Iverson JB (1992) Species richness maps of the turtles of the world. Smithsonian Herpetol. Inform. Service 88, 1–18

  • Jakimska A, Konieczka P, Skora K, Namiesnik J (2011) Bioaccumulation of metals in tissues of 673 marine animals, Part II: metal concentrations in animal tissues. Pol J Environ Stud 20(5):1117–1125

    CAS  Google Scholar 

  • Jha AN (2008) Ecotoxicological applications and significance of the comet assay. Mutagenesis 23:207–221. https://doi.org/10.1093/mutage/gen014

    Article  CAS  Google Scholar 

  • Keen CL, Taubeneck MW, Zidenberg-Cherr S, Daston GP, Rogers JM (1997) Toxicant exposure and trace element metabolism in pregnancy. Environ Toxicol Pharmacol 4:301–308. https://doi.org/10.1016/s1382-6689(97)10028-x

    Article  CAS  Google Scholar 

  • Kolbe JJ, Janzen FJ (2002) Experimental analysis of an early life-history stage: water loss and migrating hatchling turtles. Copeia 1:22–226. https://doi.org/10.1111/j.1365-2435.2006.01220.x

    Article  Google Scholar 

  • Luz VLF (2005) Criação comercial de tartaruga e tracajá – Manual técnico. SEBRAE, Cuiabá, p 72

    Google Scholar 

  • Malvasio A, Souza AM, Molina FB, Sampaio FA (2003) Comportamento e preferência alimentar em Podocnemis expansa (Schweigger) P. Unifilis (Troschel) e P. sextuberculata (Cornalia) em cativeiro (Testudines, Pelomedusidae). Rev Bras Zool 20(1):161–168. https://doi.org/10.1590/S0101-81752003000100021

    Article  Google Scholar 

  • Martins AlP (2008) Redução da qualidade do ambiente com reflexos na disponibilidade e qualidade do alimento, redução dos abrigos e da Biodiversidade. Dissertação de Mestrado em Sustentabilidade em Ecossistemas. Universidade Federal do Maranhão

  • Muñoz CC, Vermeiren P (2020) Maternal Transfer of Persistent Organic Pollutants to Sea Turtle Eggs: a Meta‐Analysis Addressing Knowledge and Data Gaps Toward an Improved Synthesis of Research Outputs. Environ Toxicol Chem 39(1):9–29. https://doi.org/10.1002/etc.4585

    Article  CAS  Google Scholar 

  • Nagle RD, Rowe CL, Congdon JD (2001) Accumulation and selective maternal transfer of contaminants in the turtle Trachemys scripta associated with coal ash deposition. Arch Environ Contam Toxicol 40:531–536. https://doi.org/10.1007/s002440010206

    Article  CAS  Google Scholar 

  • Ohlendorf HM, Saiki MK, Aldrich TW (1986) Embryonic mortality and abnormalities of aquatic birds: apparent impacts of selenium from irrigation drainwater. Sci Total Environ 52:49–63

    Article  CAS  Google Scholar 

  • Pappas AC, Karadas F, Surai PF, Wood NAR, Cassey P, Bortolotti GR, Speake BK (2006) Interspecies variation in yolk selenium concentrations among eggs of free-living birds: the effect of phylogeny. J Trace Elem Med Biol 20:155–160. https://doi.org/10.1016/j.jtemb.2006.03.001

    Article  CAS  Google Scholar 

  • Packard MJ, Packard GC, Boardman TJ (1982) Structure of eggshells and water relations of reptilian eggs. Herpetologica 38:136–155

    Google Scholar 

  • Park SY, Choi J (2007) Cytotoxicity, genotoxicity and ecotoxicity assay usinghu- man cell and environmental species for the screening of the risk from pollutant exposure. Environ Int 33:817–822. https://doi.org/10.1016/j.envint.2007.03.014

    Article  CAS  Google Scholar 

  • Pezzuti JCB, Lima JP, Silva DF, Begossi A (2010) Uses and taboos of turtles and tortoises along Rio Negro. Amazon Basin BioOne 30-1:153–168

    Google Scholar 

  • Perrault JR (2012) Assessment of mercury and selenium concentrations in tissues of stranded leatherback sea turtles (Dermochelys coriacea). J Herpetol Med Surg 22:76–85. https://doi.org/10.5818/1529-9651-22.3.76

    Article  Google Scholar 

  • Pritchard PCH (1979) Encyclopedia of turtles. TFH Publications Incorporated, Limited, Neptune NJ, p 880

    Google Scholar 

  • Pritchard PCH, Trebbau P (1984) The turtles of Venezuela. Contributions to Herpetology 2. Society for the Study of Amphibians and Reptiles. Oxford, Ohio, pp 33–73

    Google Scholar 

  • Pusch PB (2007) Inventário de cargas de metais a partir de fontes difusas de poluição. Dissertação de mestrado, Universidade Estadual de Campinas, SP. pp 118

  • Ramalho JFGP, Amaral S, Nelson MB, Velloso ACX (2000) Contaminação da microbacia de Caetés com metais pesados pelo uso de agroquímicos. Pesq agropec bras [online] 35-7:1289–1303. https://doi.org/10.1590/S0100-204X2000000700002

    Article  Google Scholar 

  • Roe JH, Hopkins WA, Baionno JA, Staub BP, Rowe CL, Jackson BP (2004) Maternal transfer of selenium in Alligator mississippiensis nesting downstream from a coal-burning power plant. Environ Toxicol Chem 23:1969–1972

    Article  CAS  Google Scholar 

  • Roe JH, Sill NS, Columbia MR, Paladino FV (2011) Trace metals in eggs and hatchlings of pacific leatherback turtles (Dermochelys coriacea) nesting at Playa Grande, Costa Rica. Chelonian Conserv Biol 10:3–9

    Article  Google Scholar 

  • Ross DAN, Guzman HM, Potvin C, van Hinsberg VJ (2017) A review of toxic metal contamination in marine turtle tissues and its implications for human health. Reg Stud Mar Sci 15:1–9. https://doi.org/10.1016/j.rsma.2017.06.003

    Article  Google Scholar 

  • Roze JA (1964) Pilgrim of the river. Nat Hist 73:35–41

    Google Scholar 

  • Sakai H, Ichihashi H, Suganuma H, Tatsukawa R (1995) Heavy-metal monitoring in sea-turtles using eggs. Mar Pollut Bull 30:347–353. https://doi.org/10.1016/0025-326X(94)00185-C

    Article  CAS  Google Scholar 

  • Schneider L, Belger L, Burger J, Vogt RC (2009) Mercury bioacumulation in four tissues of Podocnemis erythrocephala (Podocnemididae: Testudines) as a function of water parameters. Sci Total Environ 407:1048–1054. https://doi.org/10.1016/j.scitotenv.2008.09.049

    Article  CAS  Google Scholar 

  • Schneider L, Belger L, Burger J, Vogt RC, Ferrara CR (2010) Mercury levels in muscle of six species of turtles eaten by people along the Rio Negro of the Amazon Basin. Arch Environ Contam Toxicol 58:444–450. https://doi.org/10.1007/s00244-009-9358-z

    Article  CAS  Google Scholar 

  • Shugart LR (2000) DNA damage as a biomarker of exposure. Ecotoxicology 9:329–340. https://doi.org/10.1023/A:1026513009527

    Article  CAS  Google Scholar 

  • Shugart LR (1990) Biological monitoring: testing for genotoxicity. In: McCarthy JF, Shugart LR (Eds.) Biomarkers of Environmental Contamination. Lewis Publishers, Boca Raton, FL, US, p 205–216

    Google Scholar 

  • Shugart L, Theodorakis C (1998) New trends in biological monitoring: application of biomarkers to genetic ecotoxicology. Biotherapy 11:119–127. https://doi.org/10.1023/A:1007911027243

    Article  CAS  Google Scholar 

  • Sílvia P, Duarte B, Castro N, Almeida PR, Caçador I, Costa JL (2015) The Lusitanian toadfish as bioindicator of estuarine sediment metal burden: the influence of gender and reproductive metabolism. Ecol Indicat 48:370–379. https://doi.org/10.1590/s0100-736x2017001000017

    Article  Google Scholar 

  • Souza NLN, Carneiro MTWD, Pimentel EF, Frossard A, Freire JB, Endringer DC, Ferreira PD (2018) Trace elements influence the hatching success and emergence of Caretta caretta and Chelonia mydas. J. Trace Elem Med Biol 50:117–122. https://doi.org/10.1016/j.jtemb.2018.06.007

    Article  CAS  Google Scholar 

  • Sparling DW, Matson C, Bickham J, Doelling-Brown (2006) Toxicity of glyphosate as glypro® and L1700 to red-eared slider (Trachemys scripta elegans) embryos and early hatchlings. Environ Toxicol Chem 25:2768–2774. https://doi.org/10.1897/05-152.1

    Article  CAS  Google Scholar 

  • Steyermark AC, Spotila JR (2001) Body temperature and maternal identity affect snapping turtle (Chelydra serpentina) righting response. Copeia 4:1050–1057. 10.1643/0045-8511(2001)001[1050:BTAMIA]2.0.CO;2

    Article  Google Scholar 

  • Storelli MM, Marcotrigiano GO (2003) Heavy metal residues in tissues of marine turtles. Mar Pollut Bull 46(4):397–400. https://doi.org/10.1016/S0025-326X(02)00230-8

    Article  CAS  Google Scholar 

  • Theodorakis CW, Swartz CD, Rogers WJ, Bickham JW, Donnelly KC, Adams SM (2000) Relationship between genotoxicity, mutagenicity, and fish commu- nity structure in a contaminateds tream. J Aquat Ecosyst Stress Recover 7:131–143. https://doi.org/10.1023/A:1009971330138

    Article  CAS  Google Scholar 

  • Tiller KG (1989) Heavy metals in soils and their environmental significance. In: Stewart BA (eds) Advances in soil science. Advances in soil science, vol 9. Springer, New York, NY, 10.1007/978-1-4612-3532-3_2

    Google Scholar 

  • Tryfonas AE, Tucker JK, Brunkow PE, Hohnson KA, Hussein HS, Lin Z (2006) Metal accumulation in eggs of the red-eared slider (Trachemys scripta elegans) in the lower Illinois River. Chemosphere 63:39–48. https://doi.org/10.1016/j.chemosphere.2005.07.080

    Article  CAS  Google Scholar 

  • Valdes SAC, Vieira LG, Ferreira CH, Mendonça JS, Ribeiro PRQ, Fernandes EA, Santos ALQ (2015) Effects of exposure to methyl parathion on egg hatchability and eggshell chemical composition in Podocnemis expansa (Testudines, Podocnemididae). Zool Sci 32:135–140. https://doi.org/10.2108/zs140164

    Article  Google Scholar 

  • Vazquez GF, Reyes MC, Fernandez G, Aguayo JEC, Sharma VK (1997) Contamination in Marine Turtle (Dermochelys coriaca)Egg Shells of Playon de Mexiquillo, Michoacan, Mexico. Environ Contam Toxicol 58:326–333. https://doi.org/10.1007/s001289900338

    Article  CAS  Google Scholar 

  • Vogt RC (2008) Amazon turtles. Gráfica Bíblos, Lima, Peru, p 104

    Google Scholar 

  • Zapata LM, Bock BC, Orozco LY, Palacio JA (2016) Application of the micronucleus test and comet assay in Trachemys callirostris erythrocytes as a model for in situ genotoxic monitoring. Ecotoxicol Environ Saf 127:108–116. https://doi.org/10.1016/j.ecoenv.2016.01.016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank ICMBio/RAN, IBAMA and their respective Amazon Chelonians Project (ACP) for carrying out the sampling expeditions when possible, especially Ana Paula Lustosa and Leo Caetano Fernandes da Silva. The authors also thank all their undergraduation students and the local people for their logistical support in the field, and for all field work assistance during the monitoring of females and nests on the island’s beaches. The authors also acknowledge Marli de Oliveira Silva for her assistance with the chemical analysis. The authors would like to thank to Research and Development Department of Tommasi Ambiental for the trace element analysis and support assistance.

Funding

This research was supported by Espírito Santo State Scientific Research Foundation (FAPES), grants # 76413730/16. Higher Education Personnel Improvement Coordination - Brazil (CAPES) provided postgraduate stipends for the student Alexandra Frossard.

Author information

Authors and Affiliations

Authors

Contributions

AF: performed the study, collected the data, analyzed the data, and drafted the manuscript. GCC: performed the statistical analysis. ATL: contributed to collect the data. OAH: contributed with the data (metal analysis). ARCG: provided mentorship and contributed to and approved the final manuscript.

Corresponding author

Correspondence to Alexandra Frossard.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

Sampling methodology and all the procedures realized in this study were conducted respecting the following authorizations for scientific activities: Ministry of the Environment (Ministério do Meio Ambiente (MMA)); Chico Mendes Institute for Biodiversity Conservation (Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio)); Biodiversity Authorization and Information System (Sistema de Autorização e Informação em Biodiversidade (SISBIO) (Number: 50290-1)); and Committee on Ethics in Animal Use at Vila Velha University (Comissão de Ética no Uso de Animais) (CEUA) (# 357-2015), for the 2015/2018 breeding seasons.

Consent for publication

The authors of this work declare our consent for it to be published.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frossard, A., Coppo, G.C., Lourenço, A.T. et al. Metal bioaccumulation and its genotoxic effects on eggs and hatchlings of giant Amazon river turtle (Podocnemis expansa). Ecotoxicology 30, 643–657 (2021). https://doi.org/10.1007/s10646-021-02384-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-021-02384-8

Keywords

Navigation