Skip to main content
Log in

Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The soybean aphid, Aphis glycines Matsumura, is a major pest in soybean crop. Current management of this pest relies mainly on insecticides applications, and the neonicotinoid imidacloprid has been proposed as an effective insecticide to control A. glycines in soybean field. Imidacloprid at lethal concentrations not only exerts acute toxicity to A. glycines, but also cause various biological changes when aphids are chronically exposed to lower concentrations. In this study, we assessed the effects of a low-lethal (0.20 mg L−1) and two sublethal (0.05 and 0.10 mg L−1) imidacloprid concentrations on various A. glycines life history traits. Aphid exposure to 0.20 mg L−1 imidacloprid caused slower juvenile development, shorter reproductive period, and reduced adult longevity, fecundity and total lifespan. Stimulatory effects, i.e. hormesis, on reproduction and immature development duration were observed in aphids exposed to the lower sublethal imidacloprid concentrations. Consequently, the net reproduction rate (R 0) was significantly higher than in the control aphids. These findings stress the importance of the actual imidacloprid concentration in its toxicological properties on A. glycines. Therefore, our results would be useful for assessing the overall effects of imidacloprid on A. glycines and for optimizing integrated pest management programs targeting this pest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agatz A, Cole TA, Preuss TG, Zimmer E, Brown CD (2013) Feeding inhibition explains effects of imidacloprid on the growth, maturation, reproduction, and survival of Daphnia magna. Environm Sci Technol 47:2909–2917

    Article  CAS  Google Scholar 

  • Agatz A, Ashauer R, Brown CD (2014) Imidacloprid perturbs feeding of Gammarus pulex at environmentally relevant concentrations. Environ Toxicol Chem 33:648–653

    Article  CAS  Google Scholar 

  • Ali A, Ahmad F, Biondi A, Wang Y, Desneux N (2012) Potential for using Datura alba leaf extracts against two major stored grain pests, the khapra beetle Trogoderma granarium and the rice weevil Sitophillus oryzae. J Pest Sci 85:359–366

    Article  Google Scholar 

  • Ayyanath M-M, Cutler GC, Scott-Dupree CD, Sibley PK (2013) Transgenerational shifts in reproduction hormesis in green peach aphid exposed to low concentrations of imidacloprid. PLoS One 8:e74532

    Article  CAS  Google Scholar 

  • Bao HB, Liu SH, Gu JH, Wang XZ, Liang XL, Liu ZW (2009) Sublethal effects of four insecticides on the reproduction and wing formation of brown planthopper, Nilaparvata lugens. Pest Manag Sci 65:170–174

    Article  CAS  Google Scholar 

  • Bengochea P, Budia F, Viñuela E, Medina P (2014) Are kaolin and copper treatments safe to the olive fruit fly parasitoid Psyttalia concolor? J Pest Sci 87:351–359

  • Biondi A, Mommaerts V, Smagghe G, Vinuela E, Zappalà L, Desneux N (2012) The non-target impact of spinosyns on beneficial arthropods. Pest Manag Sci 68:1523–1536

    Article  CAS  Google Scholar 

  • Biondi A, Zappalà L, Stark JD, Desneux N (2013a) Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS 8:e76548

    Article  CAS  Google Scholar 

  • Biondi A, Desneux N, Amiens-Desneux E, Siscaro G, Zappalà L (2013b) Biology and developmental strategies of the Palaearctic parasitoid Bracon nigricans (Hymenoptera: Braconidae) on the Neotropical moth Tuta absoluta (Lepidoptera: Gelechiidae). J Econ Entomol 106:1638–1647

    Article  Google Scholar 

  • Boina DR, Onagbola EO, Salyani M, Stelinski LL (2009) Antifeedant and sublethal effects of imidacloprid on Asian citrus psyllid, Diaphorina citri. Pest Manag Sci 65:870–877

    Article  CAS  Google Scholar 

  • Cai EX (2009) Residue and safe application of imidacloprid on vegetable soybean. Fujian J Agr Sci 24:241–245

  • Calabrese EJ, Baldwin LA (2001) Hormesis: a generalizable and unifying hypothesis. Crit Rev Toxicol 31:353–424

    Article  CAS  Google Scholar 

  • Cordeiro EMG, de Moura ILT, Fadini MAM, Guedes RNC (2013) Beyond selectivity: are behavioral avoidance and hormesis likely causes of pyrethroid-induced outbreaks of the southern red mite Oligonychus ilicis? Chemosphere 93:1111–1116

    Article  CAS  Google Scholar 

  • Cutler GC, Ramanaidu K, Astatkiec T, Ismana MB (2009) Green peach aphid, Myzus persicae (Hemiptera: Aphididae), reproduction during exposure to sublethal concentrations of imidacloprid and azadirachtin. Pest Manag Sci 65:205–209

    Article  CAS  Google Scholar 

  • Damsteegt VD, Stone AL, Kuhlmann M, Gildow FE, Domier LL, Sherman DJ, Schneider WL (2011) Acquisition and transmissibility of U.S. soybean dwarf virus isolates by the soybean aphid, Aphis glycines. Plant Dis 95:945–950

    Article  Google Scholar 

  • Desneux N, Pham-Delegue MH, Kaiser L (2004) Oviposition behaviour and patch-time allocation in two aphid parasitoids exposed to deltamethrin residues. Entomol Exp Appl 112:227–235

    Article  CAS  Google Scholar 

  • Desneux N, Fauvergue X, Dechaume-Moncharmont FX, Kerhoas L, Ballanger Y, Kaiser L (2005) Diaeretiella rapae limits Myzus persicae populations following applications of deltamethrin in oilseed rape. J Econ Entomol 98:9–17

    Article  Google Scholar 

  • Desneux N, Ramirez-Romero R, Kaiser L (2006a) Multistep bioassay to predict recolonization potential of emerging parasitoids after a pesticide treatment. Environ Toxicol Chem 25:2675–2682

    Article  CAS  Google Scholar 

  • Desneux N, O’Neil RJ, Yoo HJS (2006b) Suppression of population growth of the soybean aphid, Aphis glycines Matsumura, by predators: the identification of a key predator and the effects of prey dispersion, predator abundance, and temperature. Environ Entomol 35:1342–1349

    Article  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  Google Scholar 

  • Desneux N, Barta RJ, Hoelmer KA, Hopper KR, Heimpel GE (2009) Multifaceted determinants of host specificity in an aphid parasitoid. Oecologia 160:387–398

    Article  Google Scholar 

  • Di Prisco G, Cavaliere V, Annoscia D, Varricchio P, Caprio E, Nazzi F, Gargiulo G, Pennacchio F (2013) Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc Natl Acad Sci USA 110:18466–18471

    Article  Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Fogel MN, Schneider MI, Desneux N, Gonzalez B, Ronco AE (2013) Impact of the neonicotinoid acetamiprid on immature stages of the predator Eriopis connexa (Coleoptera: Coccinellidae). Ecotoxicology 22:1063–1071

    Article  CAS  Google Scholar 

  • Forbes VE, Calow P (1999) Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environ Toxicol Chem 18:1544–1556

    Article  CAS  Google Scholar 

  • Gerami S, Jahromi KT, Ashouri A, Rasoulian G, Heidari A (2005) Sublethal effects of imidacloprid and pymetrozine on the life table parameters of Aphis Gpssypii Glover (Homoptera: Aphididae). Comm Appl Biol Sci 70:779–785

    CAS  Google Scholar 

  • Gontijo PC, Moscardini VF, Michaud JP, Carvalho GA (2014) Non-target effects of chlorantraniliprole and thiamethoxam on Chrysoperla carnea when employed as sunflower seed treatments. J Pest Sci 87:711–719

  • Guedes RNC, Cutler GC (2014) Insecticide-induced hormesis and arthropod pest management. Pest Manag Sci 70:690–697

    Article  CAS  Google Scholar 

  • Han P, Niu CY, Lei CL, Cui JJ, Desneux N (2010a) Quantification of toxins in a Cry1Ac + CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L. Ecotoxicology 19:1452–1459

    Article  CAS  Google Scholar 

  • Han P, Niu CY, Lei CL, Cui JJ, Desneux N (2010b) Use of an innovative T-tube maze assay and the proboscis extension response assay to assess sublethal effects of GM products and pesticides on learning capacity of the honey bee Apis mellifera L. Ecotoxicology 19:1612–1619

    Article  CAS  Google Scholar 

  • He YX, Zhao J, Zheng Y, Zhan Z, Desneux N, Wu KM (2012) Lethal effect of imidacloprid on the coccinellid predator Serangium japonicum and sublethal effects on predator voracity and on functional response to the whitefly Bemisia tabaci. Ecotoxicology 21:1291–1300

    Article  CAS  Google Scholar 

  • He YX, Zhao JW, Zheng Y, Weng QY, Biondi A, Desneux N, Wu KM (2013) Assessment of potential sublethal effects of various insecticides on key biological traits of the tobacco whitefly, Bemisia tabaci. Int J Biol Sci 9:246–255

    Article  Google Scholar 

  • Heimpel GE, Ragsdale DW, Venette R, Hopper KR, O’Neil RJ, Rutledge CE, Wu Z (2004) Prospects for importation biological control of the soybean aphid: anticipating potential costs and benefits. Ann Entomol Soc Am 97:249–258

    Article  Google Scholar 

  • Heimpel GE, Yang Y, Hill JD, Ragsdale DW (2013) Environmental consequences of invasive species: greenhouse gas emissions of insecticide use and the role of biological control in reducing emissions. PLoS One 8:e72293

    Article  CAS  Google Scholar 

  • Jager T, Barsi A, Ducrot V (2013) Hormesis on life-history traits: is there such thing as a free lunch? Ecotoxicology 22:263–270

    Article  CAS  Google Scholar 

  • James DG (1997) Imidacloprid increase egg production in Amblyseius Victoriensis (Acari; Phytoseiidae). Expl Appl Acarol 21:75–82

    Article  CAS  Google Scholar 

  • James DG, Price TS (2002) Fecundity in twospotted spider mite (Acari: Tetranychidae) is increased by direct and systemic exposure to imidacloprid. J Econ Entomol 95:729–732

    Article  CAS  Google Scholar 

  • Lashkari MR, Sahragard A, Ghadamyari M (2007) Sublethal effects of imidacloprid and pymetrozine on population growth parameters of cabbage aphid, Brevicoryne brassicae on rapeseed, Brassica napus L. Insect Sci 14:207–212

    Article  CAS  Google Scholar 

  • Laycock I, Lenthall KM, Barratt AT, Cresswell JE (2012) Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris). Ecotoxicology 21:1937–1945

    Article  CAS  Google Scholar 

  • Li Y, Hill CB, Hartman GL (2004) Effect of three resistant soybean genotypes on the fecundity, mortality, and maturation of soybean aphid (Homoptera: Aphididae). J Econ Entomol 97:1106–1111

    Article  Google Scholar 

  • Liang P, Tian YA, Biondi A, Desneux N, Gao XW (2012) Short-term and transgenerational effects of the neonicotinoid nitenpyram on susceptibility to insecticides in two whitefly species. Ecotoxicology 21:1889–1898

    Article  CAS  Google Scholar 

  • Magalhaes LC, Hunt TE, Siegfried BD (2009) Efficacy of neonicotinoid seed treatments to reduce soybean aphid populations under field and controlled conditions in Nebraska. J Econ Entomol 102:187–195

    Article  CAS  Google Scholar 

  • Malaquias JB, Ramalho FS, Omoto C, Godoy WAC, Silveira RF (2013) Imidacloprid affects the functional response of predator Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) to strains of Spodoptera frugiperda (JE Smith) on Bt cotton. Ecotoxicology 23:192–200

    Article  Google Scholar 

  • Mensah C, Di Fonzo C, Nelson RL, Wang D (2005) Resistance to soybean aphid in early maturing soybean germplasm. Crop Sci 45:2228–2233

    Article  Google Scholar 

  • Miao J, Du ZB, Wu YQ, Gong ZJ, Jiang YL, Duan Y, Li T, Lei CL (2013) Sub-lethal effects of four neonicotinoid seed treatments on the demography and feeding behaviour of the wheat aphid Sitobion avenae. Pest Manag Sci 70:55–59

    Article  Google Scholar 

  • Moores GD, Gao XW, Denholm I, Devonshire AL (1996) Characterisation of insensitive acetylcholinesterase in insecticide resistant cotton aphids, Aphis gossypii Glover (Homoptera: Aphididae). Pestic Biochem Physiol 56:102–110

    Article  CAS  Google Scholar 

  • Nauen R, Tietjen K, Wagner K, Elbert A (1998a) Efficacy of plant metabolites of imidacloprid against Myzus persicae and Aphis gossypii (Homoptera: Aphididae). Pestic Sci 52:53–57

    Article  CAS  Google Scholar 

  • Nauen R, Koob B, Elbert A (1998b) Antifeedant effects of sublethal dosages of imidacloprid on Bemisia tabaci. Entomol Exp Appl 88:287–293

    Article  CAS  Google Scholar 

  • Nyman AM, Hintermeister A, Schirmer K, Ashauer R (2013) The insecticide imidacloprid causes mortality of the freshwater amphipod Gammarus pulex by interfering with feeding behavior. PLoS One 8(5):e62472

    Article  CAS  Google Scholar 

  • Pan H, Liu Y, Liu B, Lu Y, Xu X, Qian X, Wu K, Desneux N (2014) Lethal and sublethal effects of cycloxaprid, a novel cis-nitromethylene neonicotinoid insecticide, on the mirid bug Apolygus lucorum. J Pest Sci 87:731–738

  • Papachristos DP, Milonas PG (2008) Adverse effects of soil applied insecticides on the predatory coccinellid Hippodamia undecimnotata (Coleoptera: Coccinellidae). Biol Control 47:77–81

    Article  CAS  Google Scholar 

  • Planes L, Catalan J, Tena A, Porcuna JL, Jacas JA, Izquierdo J, Urbaneja A (2013) Lethal and sublethal effects of spirotetramat on the mealybug destroyer, Cryptolaemus montrouzieri. J Pest Sci 86:321–327

    Article  Google Scholar 

  • Ragsdale DW, McCornack BP, Venette RC, Potter DB, Macrae IV et al (2007) Economic threshold for soybean aphid (Hemiptera: Aphididae). J Econ Entomol 100:1258–1267

    Article  CAS  Google Scholar 

  • Ragsdale DW, Landis DA, Brodeur J, Heimpel GE, Desneux N (2011) Ecology and magement of the soybean aphid in North America. Annu Rev Entomol 56:375–399

    Article  CAS  Google Scholar 

  • Saber M, Abedi Z (2013) Effects of methoxyfenozide and pyridalyl on the larval ectoparasitoid Habrobracon hebetor. J Pest Sci 86:685–693

    Article  Google Scholar 

  • Shi X, Jiang L, Wang H, Qiao K, Wang D, Wang K (2011) Toxicities and sublethal effects of seven neonicotinoid insecticides on survival, growth and reproduction of imidacloprid-resistant cotton aphid, Aphis gossypii. Pest Manag Sci 67:1528–1533

    Article  CAS  Google Scholar 

  • Shirvani-Farsani N, Zamani AA, Abbasi AA, Kheradmand K (2013) Toxicity of three insecticides and tobacco extract against the fungus gnat, Lycoriella auripila and the economic injury level of the gnat on button mushroom. J Pest Sci 86:591–597

    Article  Google Scholar 

  • Stark JD, Banks JE (2003) Population-level effects of pesticides and other toxicants on arthropods. Annu Rev Entomol 48:505–519

    Article  CAS  Google Scholar 

  • Stark JD, Banks JE, Vargas R (2004) How risky is risk assessment: the role that life history strategies play in susceptibility of species to stress. Proc Natl Acad Sci USA 101:732–736

    Article  CAS  Google Scholar 

  • Tan Y, Biondi A, Desneux N, Gao XW (2012) Assessment of physiological sublethal effects of imidacloprid on the mirid bug Apolygus lucorum (Meyer-Dür). Ecotoxicology 21:1989–1997

    Article  CAS  Google Scholar 

  • Tomizawa M, Casida JE (2001) Structure and diversity of insect nicotinic acetylcholine receptors. Pest Manag Sci 57:914–922

    Article  CAS  Google Scholar 

  • Vernon RS, van Herk WG, Clodius M, Harding C (2013) Crop protection and mortality of Agriotes obscurus wireworms with blended insecticidal wheat seed treatments. J Pest Sci 86:137–150

    Article  Google Scholar 

  • Wang AH, Wu JC, Yu YS, Liu JL, Yue JF, Wang MY (2005) Selective insecticide-induced stimulation on fecundity and biochemical changes in Tryporyza incertulas (Lepidoptera: Pyralidae). J Econ Entomol 98:1144–1149

    Article  CAS  Google Scholar 

  • Widiarta IN, Matsumura M, Suzuki Y, Nakasuji F (2001) Effects of sublethal doses of imidacloprid on the fecundity of green leafhoppers, Nephotettix spp. (Hemiptera: Cicadellidae) and their natural enemies. Appl Entomol Zool 36:501–507

    Article  CAS  Google Scholar 

  • Wu ZS, Schenk-Hamlin D, Zhan WY, Ragsdale DW, Heimpel GE (2004) The soybean aphid in China: a historical review. Ann Entomol Soc Am 97:209–218

    Article  Google Scholar 

  • Yu YS, Shen GQ, Zhu HL, Lu YT (2010) Imidacloprid-induced hormesis on the fecundity and juvenile hormone levels of the green peach aphid Myzus persicae (Sulzer). Pest Biochem Physiol 98:238–242

    Article  CAS  Google Scholar 

  • Zotti MJ, Grutzmacher AD, Lopes IH, Smagghe G (2013) Comparative effects of insecticides with different mechanisms of action on Chrysoperla externa (Neuroptera: Chrysopidae): lethal, sublethal and dose-response effects. Insect Sci 20:743–752

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was mainly supported by the National Natural Science Foundation of China (31272077).

Conflict of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunlun Song.

Additional information

Yanyan Qu and Da Xiao have contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., Xiao, D., Li, J. et al. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines . Ecotoxicology 24, 479–487 (2015). https://doi.org/10.1007/s10646-014-1396-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1396-2

Keywords

Navigation