Skip to main content

Advertisement

Log in

Acute and sublethal effects of sequential exposure to the pesticide azinphos-methyl on juvenile earthworms (Eisenia andrei)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The use of organophosphate pesticides is an integral part of commercial farming activities and these substances have been implicated as a major source of environmental contamination and may impact on a range of non-target fauna. The extent to which soil dwelling non-target organisms are affected by exposure to the organophosphate azinphos-methyl was investigated through monitoring selected biomarker responses and life cycle effects under laboratory conditions in the earthworm Eisenia andrei. Standard acute toxicity tests were conducted followed by a sequential exposure regime experiment, in order to assess the effects of multiple pesticide applications on biomarker (cholinesterase activity and neutral red retention time), life-cycle (growth and reproduction) and behaviour (avoidance and burrowing activity) responses. The present study indicates that the time between exposure events was a more important variable than concentration and that a longer interval between exposures may mitigate the effects of pesticide exposure provided that the exposure concentration is low. Additionally, it was shown that E. andrei was unable to avoid the presence of azinphos-methyl in soil, even at concentrations as high as 50% of the LC 50 value, indicating that the presence of azinphos-methyl in the soil pose a realistic threat to earthworms and other soil dwelling organisms. The ChE inhibition test showed a high percentage inhibition of the enzyme in all exposure groups that survived and NRR times of exposed organisms were lower than that of the controls. The present study yielded important results that contribute to the understanding of biological impacts of pesticide pollution on the environment. Extrapolating these results can aid in optimising pesticide application regimes to mitigate the environmental effects thereof and thus ensuring sustained soil biodiversity in agricultural areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aamodt S, Konestabo HS, Sverdrup LE, Gudbrandsen M, Reinecke SA, Reinecke AJ, Stenersen J (2007) Recovery of cholinesterase activity in the earthworm Eisenia fetida savigny following exposure to chlorpyrifos. Environ Toxicol Chem 26:1963–1967

    Article  CAS  Google Scholar 

  • Anderson GL, Cole RD, Williams PL (2004) Assessing behavioral toxicity with Caenorhabditis elegans. Environ Toxicol Chem 23(5):1235–1240

    Article  CAS  Google Scholar 

  • Bonfanti P, Colombo A, Orsi F, Nizzetto I, Andrioletti M, Bacchetta R, Mantecca P, Fascio U, Vailati G, Vismara C (2004) Comparative teratogenicity of Chlorpyrifos and Malathion on Xenopus laevis development. Aquat Toxicol 70:189–200

    Article  CAS  Google Scholar 

  • Booth LH, O’Halloran K (2001) A comparison of biomarker responses in the earthworm Aporrectodea caliginosa to the organophosphorus insecticides diazinon and chlorpyrifos. Environ Toxicol Chem 20(11):2494–2502

    CAS  Google Scholar 

  • Booth LH, Heppelthwaite V, Eason CT (1998) Cholinesterase and glutathione S-transferase in the earthworm Aporrectodea caliginosa as biomarkers of organophosphate exposure. Proceedings of the 51st New Zealand plant protection conference, Hamilton, pp. 138–142

  • Booth LH, Hodge S, O’Halloran K (2001) Use of biomarkers to detect use and abuse of field applications of a model organophosphate pesticide. Bull Environ Contam Toxicol 67:633–640

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bustos-Obregon E, Goicochea RI (2002) Pesticide soil contamination mainly affects earthworm male reproductive parameters. Asian J Androl 4:195–199

    CAS  Google Scholar 

  • Calow P (1991) Physiological costs of combating chemical toxicants—ecological implications. Comp Biochem Physiol C 100(1/2):3–6

    Article  CAS  Google Scholar 

  • Capowiez Y, Berard A (2006) Assessment of the effects of imidacloprid on the behavior of two earthworm species (Aporrectodea nocturna and Allolobophora icterica) using 2D terraria. Ecotoxicol Environ Saf 64(2):198–206

    Article  CAS  Google Scholar 

  • Capowiez Y, Rault M, Mazzia C, Belzunces L (2003) Earthworm behaviour as a biomarker—a case study using imidacloprid. Pedobiologia 47:542–547

    Google Scholar 

  • Chandrasekara LWHU, Pathiratne A (2005) Response of brain and liver cholinesterases of Nile tilapia, Oreochromis Niloticus, to single and multiple exposures of chlorpyrifos and carbosulfan. Bull Environ Contam Toxicol 75:1228–1233

    Article  Google Scholar 

  • Chandrasekara LWHU, Pathiratne A (2007) Body size-related differences in the inhibition of brain acetylcholinesterase activity in juvenile Nile tilapia (Oreochromis niloticus) by chlorpyrifos and carbosulfan. Ecotoxicol Environ Saf 67:109–119

    Article  CAS  Google Scholar 

  • Collange B, Wheelock CE, Rault M, Mazzia C, Capowiez Y, Sanchez-Hernandez JC (2010) Inhibition, recovery and oxime-induced reactivation of muscle esterases following chlorpyrifos exposure in the earthworm Lumbricus terrestris. Environ Pollut 158:2266–2272

    Article  CAS  Google Scholar 

  • Day KE, Scott IM (1990) Use of acetylcholinesterase activity to detect sublethal toxicity in stream invertebrates exposed to low concentrations of organophosphate insecticides. Aquat Toxicol 18:101–114

    Article  CAS  Google Scholar 

  • De Mel GW, Pathiratne A (2005) Toxicity assessment of insecticides commonly used in rice pest management to the fry of the common carp Cyprinus carpio, a food fish culturable in rice fields. J Appl Ichthyol 21(2):146–150

    Article  Google Scholar 

  • Dell’Omo G, Peskacheva MG, Wolfer DP, Lipp HP, Shore RF (2003) Comparative effects of exposure to an organophosphate pesticide on locomotor activity of laboratory mice and five species of wild rodents. Bull Environ Contam Toxicol 70(1):138–145

    Article  Google Scholar 

  • Eason CT, Svendsen C, O’Halloran K, Weeks JM (1999) An assessment of the lysosomal neutral red retention test and immune function assay in earthworms (Eisenia andrei) following exposure to chlorpyrifos, benzo-a-pyrene (BaP) and contaminated soil. Pedobiologia 43:641–645

    CAS  Google Scholar 

  • Ellman GL, Courtney D, Andres JR, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • Fábián M, Petesen H (1994) Short-term effects of the insecticide dimethoate on activity and special distribution of a soil inhabiting collembolan Folsomia fimetaria Linné (Collembola: Isotomidae). Pedobiologia 38:289–302

    Google Scholar 

  • Fukuto R (1990) Mechanism of action of organophosphorous and carbamate insecticides. Environ Health Perspec 87:245–254

    Article  CAS  Google Scholar 

  • Fulton MH, Key PB (2001) Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ Toxicol Chem 20(1):37–45

    Article  CAS  Google Scholar 

  • Galloway TS, Depledge MH (2001) Immunotoxicity in invertebrates: measurement and ecotoxicological relevance. Ecotoxicology 10:5–23

    Article  CAS  Google Scholar 

  • Galloway T, Handy R (2003) Immunotoxicity of organophosphorus pesticides. Ecotoxicology 12:345–363

    Article  CAS  Google Scholar 

  • Garcia M, Römbke J, Torres de Brito M, Scheffczyk A (2008) Effects of three pesticides on the avoidance behavior of earthworms in laboratory tests performed under temperate and tropical conditions. Environ Pollut 153:450–456

    Article  CAS  Google Scholar 

  • German Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (1999). Monograph—Azinphos-methyl. Vol 3. Toxicology and metabolism (http://www.bvl.bund.de) Accessed 26 Aug 2011

  • Gibbs MH, Wicker LF, Stewart AF (1996) A method for assessing sublethal effects of contaminants in soils to the earthworm, Eisenia fetida. Environ Toxicol Chem 15(3):360–368

    CAS  Google Scholar 

  • Gonzales-Vejares S, Sabat P, Sanchez-Hernandez JC (2010) Tissue-specific inhibition and recovery of esterase activities in Lumbricus terrestris experimentally exposed to chlorpyrifos. Comp Biochem Physiol C 151:351–359

    Google Scholar 

  • Gupta SK, Sunderaraman V (1991) Correlation between burrowing capability and AChE activity in the earthworm, Pheretima posthuma, on exposure to carbaryl. Bull Environ Contam Toxicol 46:859–865

    Article  CAS  Google Scholar 

  • Hernandez J, Robledo NR, Velasco L, Quintero R, Pickard MR, Vazquez-Duhalt R (1998) Chloroperoxidase-mediated oxidation of organophosphorus pesticides. Pestic Biochem Physiol 61:87–94

    Article  CAS  Google Scholar 

  • Hill EF (2003) Wildlife toxicology of organophosphorus and carbamate pesticides. In: Hoffman DJ, Rattnet BA, Burton GA, Cairns J (eds) Handbook of ecotoxicology, 2nd edn. Lewis Publishers/CRC Press, New York, pp 281–312

    Google Scholar 

  • Hodge S, Webster KM, Booth LH, Heppelthwaite V, O’Halloran K (2000) Non-avoidance of organophosphate insecticides by the earthworm Aporrectodea caliginosa (Lumbricidae). Soil Biol Biochem 32:425–428

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Wiechering H (2001) Earthworm avoidance test for soil assessments: an alternative for acute and reproduction tests. J Soils Sediments 1(1):15–20

    Article  CAS  Google Scholar 

  • Hyne RV, Maher WA (2003) Invertebrate biomarkers: links to toxicosis that predict population decline. Ecotoxicol Environ Saf 54:366–374

    Article  CAS  Google Scholar 

  • Jaenike J (1982) On the relation between genetic and environmental variability in animals. J Molecular Evol 18(5):310–314

    Article  CAS  Google Scholar 

  • Jensen CS, Garsdal L, Baatrup E (1997) Acetylcholinesterase inhibition and altered locomotor behaviour in the carabid beetle Pterostichus cupreus. A linkage between biomarkers at two levels of biological complexity. Environ Toxicol Chem 16(8):1727–1732

    CAS  Google Scholar 

  • Knuth ML, Heinis LJ, Anderson LE (2000) Persistence and distribution of azinphos-methyl following application to littoral enclosure mesocosms. Ecotoxicol Environ Saf 47:167–177

    Article  CAS  Google Scholar 

  • Kristoff G, Verrengia Guerrero N, Pechén de D’Angelo AM, Cochón AC (2006) Inhibition of cholinesterase activity by azinphos-methyl in two freshwater invertebrates: Biomphalaria glabrata and Lumbriculus variegates. Toxicology 222:185–194

    Article  CAS  Google Scholar 

  • Kristoff G, Verrengia Guerrero NR, Cochón AC (2008) Effects of azinphos-methyl exposure on enzymatic and non-enzymatic antioxidant defenses in Biomphalaria glabrata and Lumbriculus variegates. Chemosphere 72:1333–1339

    Article  CAS  Google Scholar 

  • Little EE, Archeski RD, Flerov BA, Kozlovskaya VI (1990) Behavioral indicators of sublethal toxicity in rainbow trout. Arch Environ Contam Toxicol 19:380–385

    Article  CAS  Google Scholar 

  • Livingstone DR (1990) Cytochrome P-450 and oxidative metabolism in invertebrates. Biochem Soc Trans 18:15–19

    CAS  Google Scholar 

  • Loewy RM, Carvajala LG, Novellia MA, Pechen De D’Angelo M (2006) Azinphos methyl residues in shallow groundwater from the fruit production region of northern Patagonia, Argentina. J Environ Sci Health, Part B 41(6):869–881

    Article  CAS  Google Scholar 

  • Løkke H, Van Gestel CAM (1998) Handbook of soil invertebrate toxicity tests. John Wiley & Sons, Chichester

    Google Scholar 

  • London L, Dalvie MA, Cairncross E, Solomons A (2000) The quality of surface and groundwater in the rural western Cape with regard to pesticides. Report no. 795/1/00. Water Research Commission, Pretoria

    Google Scholar 

  • Loureiro S, Soares AMVM, Nogueira AJA (2005) Terrestrial avoidance behaviour tests as screening tool to assess soil contamination. Environ Pollut 138:121–131

    Article  CAS  Google Scholar 

  • Lu FC (1991) Basic toxicology: fundamentals, target organs and risk assessment. Taylor and Francis, Boca Raton

    Google Scholar 

  • Maboeta MS, Reinecke SA, Reinecke AJ (2003) Linking lysosomal biomarker and population responses in a field population of Aporrectodea caliginosa (Oligochaeta) exposed to the fungicide copper oxychloride. Ecotoxicol Environ Saf 56:411–418

    Article  CAS  Google Scholar 

  • Maboeta MS, Reinecke SA, Reinecke AJ (2004) The relationship between lysosomal biomarker and organismal responses in an acute toxicity test with Eisenia fetida (Oligochaeta) exposed to the fungicide copper oxychloride. Environ Res 96:95–101

    Article  CAS  Google Scholar 

  • Mangala P, De Silva CS, van Gestel CAM (2009) Comparative sensitivity of Eisenia andrei and Perionyx excavatus in earthworm avoidance tests using two soil types in the tropics. Chemosphere 77:1609–1613

    Article  Google Scholar 

  • Martin H, Worthing CR (eds) (2000) The pesticide manual, 5th edn. British Crop Protection Council, Alton

    Google Scholar 

  • Matsumura F (1975) Toxicology of insecticides. Plenum Press, New York

    Book  Google Scholar 

  • Natal-da-Luz T, Amorim MJB, Römbke J, Paulo Sousa J (2008) Avoidance tests with earthworms and springtails: defining the minimum exposure time to observe a significant response. Ecotoxicol Environ Saf 71:545–551

    Article  CAS  Google Scholar 

  • OECD (1984) Earthworm acute toxicity test 207. OECD guideline for the testing of chemicals. Organization for Economic Cooperation and Development, Paris

    Book  Google Scholar 

  • Olvera-Velona A, Capowiez Y, Mascle O, Ortiz-Hernandez L, Benoit P (2008) Assessment of the toxicity of ethyl-parathion to earthworms (Aporrectodea caliginosa) using behavioural, physiological and biochemical markers. Appl Soil Ecol 40:476–483

    Article  Google Scholar 

  • Pérez-Losada M, Eiro J, Mato S, Domínguez J (2005) Phylogenetic species delimitation of the earthworms Eisenia fetida (Savigny, 1826) and Eisenia andrei Bouche′, 1972 (Oligochaeta, Lumbricidae) based on mitochondrial and nuclear DNA sequences. Pedobiologia 49:317–324

    Article  Google Scholar 

  • Phillips TA, Summerfelt GJ, Atchison GJ (2002) Environmental, biological, and methodological factors affecting cholinesterase activity in the walleye (Stizostedion vitreum). Arch Environ Contam Toxicol 43:75–80

    Article  CAS  Google Scholar 

  • Rault M, Collange B, Mazzia C, Capowiez Y (2008) Dynamics of acetylcholinesterase activity recovery in two earthworm species following exposure to ethylparathion. Soil Biol Biochem 40:3086–3091

    Article  CAS  Google Scholar 

  • Reinecke SA, Reinecke AJ (1999) Lysosomal response of earthworm coelomocytes induced by long-term experimental exposure to heavy metals. Pedobiologia 43:585–593

    CAS  Google Scholar 

  • Reinecke SA, Reinecke AJ (2007a) Biomarker response and biomass change of earthworms exposed to chlorpyrifos in microcosms. Ecotoxicol Environ Saf 66:92–101

    Article  CAS  Google Scholar 

  • Reinecke SA, Reinecke AJ (2007b) The impact of organophosphate pesticides in orchards on earthworms in the western Cape, South Africa. Ecotoxicol Environ Saf 66:244–251

    Article  CAS  Google Scholar 

  • Reinecke AJ, Venter JM, Viljoen (Reinecke) SA (1991) A comparison of the biology of Eisenia fetida and Eisenia andrei (Oligochaeta). Biol Fertil Soils 11:295–300

    Article  Google Scholar 

  • Reinecke SA, Helling B, Reinecke AJ (2002) Lysosomal response of earthworm (Eisenia fetida) coelomocytes to the fungicide copper oxychloride and relation to life-cycle parameters. Environ Toxicol Chem 21(5):1026–1031

    CAS  Google Scholar 

  • Rodriguez LC, Sanchez-Hernandez JC (2007) Earthworm biomarkers of pesticide contamination: current status and perspectives. J Pest Sci 32:360–371

    Article  Google Scholar 

  • Rodríguez-Fuentes G, Gold-Bouchot G (2000) Environmental monitoring using acetylcholinesterase inhibition in vitro. A case study in two Mexican lagoons. Marine Environ Res 50:357–360

    Article  Google Scholar 

  • Roex EW, Keijzers R, Van Gestel CA (2003) Acetylcholinesterase inhibition and increased food consumption rate in the zebrafish, Danio rerio, after chronic exposure to parathion. Aquat Toxicol 64(4):451–460

    Article  CAS  Google Scholar 

  • Rozman KK, Doull J, Hayes WJ (2001) Dose, time and other factors influencing toxicity. In: Kriegler R, Doull J, Ecobichon D, Gammon D, Hodgson E, Reiter L, Ross J (eds) Handbook of pesticide toxicology—principles, 2nd edn. Academic Press, San Diego, pp 1–95

    Chapter  Google Scholar 

  • Schulz R (2004) Field studies on exposure, effects and risk mitigation of aquatic nonpoint-source insecticide pollution. J Environ Qual 33:419–448

    Article  CAS  Google Scholar 

  • Scott GR, Sloman KA (2004) The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat Toxicol 68:369–392

    Article  CAS  Google Scholar 

  • Scott-Fordsmand JJ, Weeks JM (2000) Biomarkers in earthworms. Rev Environ Contam Toxicol 165:117–159

    Article  CAS  Google Scholar 

  • Shadnia S, Azizi E, Hosseini R, Khoei S, Fouladdel S, Pajoumand A, Nasser J, Abdollahi M (2005) Evaluation of oxidative stress and genotoxicity in organophosphorus insecticide formulators. Hum Exp Toxicol 24:439–445

    Article  CAS  Google Scholar 

  • Singh M, Rishi S (2005) Plasma acetylcholinesterase as a biomarker of triazophos neurotoxicity in young and adult rats. Environ Toxicol Pharmacol 19:471–476

    Article  CAS  Google Scholar 

  • Slimak KM (1997) Avoidance response as a sublethal effect of pesticides on Lumbricus terrestris (Oligochaeta). Soil Biol Biochem 29(3/4):713–715

    Article  CAS  Google Scholar 

  • Sorour J, Larink O (2001) Toxic effects of benomyl on the ultrastructure during spermatogenesis of the earthworm Eisenia fetida. Ecotoxicol Environ Saf 50:180–188

    Article  CAS  Google Scholar 

  • Springett JA, Gray RAJ (1992) Effect of repeated doses of biocides on the earthworm Aporrectodea caliginosa in laboratory culture. Soil Biol Biochem 24:1739–1744

    Article  CAS  Google Scholar 

  • Stenersen J (1979) Action of pesticides on earthworms. Part I: the toxicity of cholinesterase-inhibiting insecticides to earthworms as evaluated by laboratory tests. Pestic Sci 10:66–74

    Article  CAS  Google Scholar 

  • Stenersen JE, Brekke E, Engelstad F (1992) Earthworms for toxicity testing; species differences in response towards cholinesterase inhibiting insecticides. Soil Biol Biochem 24(12):1761–1764

    Article  CAS  Google Scholar 

  • Sturm A, de Assis HC, Hansen PD (1999) Cholinesterases of marine teleost fish: enzymological characterization and potential use in the monitoring of neurotoxic contamination. Marine Environ Res 47:389–398

    Article  CAS  Google Scholar 

  • Van Zwieten L, Rust Z, Kingston T, Merrington G, Morris S (2004) Influence of copper fungicide residues on occurrence of earthworms in avocado orchard soils. Sci Total Environ 329:29–41

    Article  Google Scholar 

  • Voua Otomo P, Jansen van Vuuren B, Reinecke SA (2009) Usefulness of DNA barcoding in ecotoxicological investigations: resolving taxonomic uncertainties using Eisenia Malm 1877 as an example. Bull Environ Contam Toxicol 82:261–264

    Article  CAS  Google Scholar 

  • Walker CH (1995) Biochemical biomarkers in ecotoxicology—some recent developments. Sci Total Environ 171:189–195

    Article  CAS  Google Scholar 

  • Wauchope RD, Buttler TM, Hornsby AG, Augustijn-Beckers PWM, Burt JP (1992) SCS/ARS/CES Pesticide properties database for environmental decision making. Rev Environ Contam Toxicol 123:5–20

    Google Scholar 

  • Weeks JM, Svendsen C (1996) Neutral red retention by lysosomes from earthworm (Lumbricus rubellus) coelomocytes: a simple biomarker of exposure to soil copper. Environ Toxicol Chem 15(10):1801–1805

    CAS  Google Scholar 

  • Xiao N, Song Y, Feng G, Liu X, Ou-Yang Z (2006) Biomarkers responses of the earthworm Eisenia fetida to acetochlor exposure in OECD soil. Chemosphere 65:907–912

    Article  CAS  Google Scholar 

  • Yeardley RB, Lazorchak JM, Gast LC (1996) The potential of an earthworm avoidance test for evaluation of hazardous waste sites. Environ Toxicol Chem 15(9):1532–1537

    Article  CAS  Google Scholar 

  • Zhou S, Duan C, Fu H, Chen Y, Wang X, Yu Z (2007) Toxicity assessment for chlorpyrifos-contaminated soil with three different earthworm test methods. J Environ Sci 19:854–858

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported financially by the National Research Foundation. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and therefore the NRF does not accept any liability in regard thereto.Two anonymous reviewers are thanked for constructive comments that improved the overall quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophié A. Reinecke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordaan, M.S., Reinecke, S.A. & Reinecke, A.J. Acute and sublethal effects of sequential exposure to the pesticide azinphos-methyl on juvenile earthworms (Eisenia andrei). Ecotoxicology 21, 649–661 (2012). https://doi.org/10.1007/s10646-011-0821-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0821-z

Keywords

Navigation