Skip to main content

Advertisement

Log in

Transforming Growth Factor beta1 Gene Variation Leu10Pro Affects Secretion and Function in Hepatic Cells

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Our previous work revealed transforming growth factor beta1 (TGFβ1) gene polymorphisms are associated with susceptibility to hepatocellular carcinoma and liver cirrhosis. However, no further study of functional substitution in hepatic cells has yet been reported.

Aims

This study was designed to uncover the functional mechanisms of TGFβ1 gene polymorphisms in the pathogenesis of liver diseases.

Methods

Two recombinant TGFβ1 expression plasmids containing TGFβ1 codon 10 Leu/Pro variation were constructed with CMV promoter and transfected into human hepatoma cell lines (HepG2 and SMMU 7721), hepatic stellate cells (LX-2), and immortalized hepatocytes (L02). The secretion capacities of TGFβ1 protein in the transfected cells were determined by ELISA. Apoptosis, proliferative activity, and expression of CD 105, CD83, and CD80 were also measured by use of flow cytometry.

Results

The ELISA results showed that cells transfected with CMV-Pro10 were more capable of TGFβ1 secretion than those transfected with CMV-Leu10. Functionally, CMV-Pro10 was more apoptosis-protective and induced more proliferation than CMV-Leu10 in transfected hepatic cells. Pro10 up-regulated expression of CD105 and down-regulated expression of CD83.

Conclusions

TGFβ1 gene Leu10Pro variation in signal peptide has significant effects on TGFβ1 secretion and functions in hepatic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gressner AM, Weiskirchen R, Breitkopf K, et al. Roles of TGF-beta in hepatic fibrosis. Front Biosci. 2002;7:d793–d807.

    Article  CAS  PubMed  Google Scholar 

  2. Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 2001;29:117–129.

    Article  CAS  PubMed  Google Scholar 

  3. Mangasser-Stephan K, Gressner AM. Molecular and functional aspects of latent transforming growth factor-beta binding protein: just a masking protein? Cell Tissue Res. 1999;297:363–370.

    Article  CAS  PubMed  Google Scholar 

  4. Annes JP, Munger JS, Rifkin DB. Making sense of latent TGF beta activation. J Cell Sci. 2003;116:217–224.

    Article  CAS  PubMed  Google Scholar 

  5. Wang H, Zhao YP, Gao CF, et al. Transforming growth factor beta1 gene variants increase transcription and are associated with liver cirrhosis in Chinese. Cytokine. 2008;43:20–25.

    Article  PubMed  Google Scholar 

  6. Gewaltig J, Mangasser-Stephan K, Gartung C, et al. Association of polymorphisms of the transforming growth factor-beta1 gene with the rate of progression of HCV-induced liver fibrosis. Clin Chim Acta. 2002;316:83–94.

    Article  CAS  PubMed  Google Scholar 

  7. Dunning AM, Ellis PD, McBride S, et al. A transforming growth factor beta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res. 2003;63:2610–2615.

    CAS  PubMed  Google Scholar 

  8. Colakogullari M, Ulukaya E, Yilmaztepe Oral A, et al. The involvement of IL-10, IL-6, IFN-gamma, TNF-alpha and TGF-beta gene polymorphisms among Turkish lung cancer patients. Cell Biochem Funct. 2008;26:283–290.

    Article  CAS  PubMed  Google Scholar 

  9. Li T, Cao BW, Dai Y, et al. Correlation of transforming growth factor beta-1 gene polymorphisms C-509T and T869C and the risk of gastric cancer in China. J Gastroenterol Hepatol. 2008;23:638–642.

    Article  CAS  PubMed  Google Scholar 

  10. Brand TC, Bermejo C, Canby-Hagino E, et al. Association of polymorphisms in TGFB1 and prostate cancer prognosis. J Urol. 2008;179:754–758.

    Article  CAS  PubMed  Google Scholar 

  11. Saltzman BS, Yamamoto JF, Decker R, et al. Association of genetic variation in the transforming growth factor beta-1 gene with serum levels and risk of colorectal neoplasia. Cancer Res. 2008;68:1236–1244.

    Article  CAS  PubMed  Google Scholar 

  12. Lazo-Langner A, Knoll GA, Wells PS, et al. The risk of dialysis access thrombosis is related to the transforming growth factor-beta1 production haplotype and is modified by polymorphisms in the plasminogen activator inhibitor-type 1 gene. Blood. 2006;108:4052–4058.

    Article  CAS  PubMed  Google Scholar 

  13. Crobu F, Palumbo L, Franco E, et al. Role of TGF-beta1 haplotypes in the occurrence of myocardial infarction in young Italian patients. BMC Med Genet. 2008;9:13.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Van Horssen J, Bo L, Dijkstra CD, et al. Extensive extracellular matrix depositions in active multiple sclerosis lesions. Neurobiol Dis. 2006;24:484–491.

    Article  PubMed  Google Scholar 

  15. Buscher R, Grasemann H. Disease modifying genes in cystic fibrosis: therapeutic option or one-way road? Naunyn Schmiedebergs Arch Pharmacol. 2006;374:65–77.

    Article  PubMed  Google Scholar 

  16. Caserta TM, Knisley AA, Tan FK, et al. Genotypic analysis of the TGF beta-509 allele in patients with systemic lupus erythematosus and Sjogren’s syndrome. Ann Genet. 2004;47:359–363.

    Article  PubMed  Google Scholar 

  17. Li H, Romieu I, Wu H, et al. Genetic polymorphisms in transforming growth factor beta-1 (TGFB1) and childhood asthma and atrophy. Hum Genet. 2007;121:529–538.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Mattey DL, Nixon N, Dawes PT, et al. Association of polymorphism in the transforming growth factor beta 1 gene with disease outcome and mortality in rheumatoid arthritis. Ann Rheum Dis. 2005;64:1190–1194.

    Article  CAS  PubMed  Google Scholar 

  19. Yamada H, Watanabe M, Nanba T, et al. The +869T/C polymorphism in the transforming growth factor-beta1 gene is associated with the severity and intractability of autoimmune thyroid disease. Clin Exp Immunol. 2008;151:379–382.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Vawter WP, Dillon-Carter O, Tourtellotte WW, et al. TGFbeta1 and TGFbeta2 concentrations are elevated in Parkinson’s disease in ventricular cerebrospinal fluid. Exp Neurol. 1996;142:313–322.

    Article  CAS  PubMed  Google Scholar 

  21. Tesseur I, Zou K, Esposito L, et al. Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest. 2006;116:3060–3069.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Prasad P, Tiwari AK, Kumar KM, et al. Association of TGFbeta1, TNFalpha, CCR2 and CCR5 gene polymorphisms in type-2 diabetes and renal insufficiency among Asian Indians. BMC Med Genet. 2007;8:20.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Khalil MS, El Nahas AM, Blakemore AI. Transforming growth factor-beta1 SNPs: genetic and phenotypic correlations in progressive kidney insufficiency. Nephron Exp Nephrol. 2005;101:e31–e41.

    Article  CAS  PubMed  Google Scholar 

  24. Awad MR, El-Gamel A, Hasleton P, et al. Genotypic variation in the transforming growth factor-beta1 gene: association with transforming growth factor-beta1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. Transplantation. 1998;66:1014–1020.

    Article  CAS  PubMed  Google Scholar 

  25. McGlynn KA, London WT. Epidemiology and natural history of hepatocellular carcinoma. Best Pract Res Clin Gastroenterol. 2005;19:3–23.

    Article  PubMed  Google Scholar 

  26. Perz JF, Armstrong GL, Farrington LA, et al. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol. 2006;45:529–538.

    Article  PubMed  Google Scholar 

  27. Ueberham E, Low R, Ueberham U, et al. Conditional tetracycline-regulated expression of TGF-beta1 in liver of transgenic mice leads to reversible intermediary fibrosis. Hepatology. 2003;37:1067–1078.

    Article  CAS  PubMed  Google Scholar 

  28. Dooley S, Hamzavi J, Breitkopf K, et al. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology. 2003;125:178–191.

    Article  CAS  PubMed  Google Scholar 

  29. Song BC, Chung YH, Kim JA, et al. Transforming growth factor beta 1 as a useful serologic marker of small hepatocellular carcinoma cancer. Cancer. 2002;94:175–180.

    Article  CAS  PubMed  Google Scholar 

  30. Wang H, Mengsteab S, Tag CG, et al. Transforming growth factor-beta1 gene polymorphisms are associated with progression of liver fibrosis in Caucasians with chronic hepatitis C infection. World J Gastroenterol. 2005;11:1929–1936.

    CAS  PubMed  Google Scholar 

  31. Qi P, Chen YM, Wang H, et al. -509C > T polymorphism in the TGF-beta1 gene promoter, impact on the hepatocellular carcinoma risk in Chinese patients with chronic hepatitis B virus infection. Cancer Immunol Immunother. 2009;58:1433–1440.

    Article  CAS  PubMed  Google Scholar 

  32. Grainger DJ, Heathcote K, Chiano M, et al. Genetic control of the circulating concentration of transforming growth factor type beta1. Hum Mol Genet. 1999;8:93–97.

    Article  CAS  PubMed  Google Scholar 

  33. Yokota M, Ichihara S, Lin TL, et al. Association of a T29 > C polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation. 2000;101:2783–2787.

    Article  CAS  PubMed  Google Scholar 

  34. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267:1456–1462.

    Article  CAS  PubMed  Google Scholar 

  35. Oberhammer FA, Pavelka M, Sharma S, et al. Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor beta1. Proc Natl Acad Sci USA. 1992;89:5408–5412.

    Article  CAS  PubMed  Google Scholar 

  36. Lin JK, Chou CK. In vitro apoptosis in the human hepatoma cell line induced by transforming growth factor beta 1. Cancer Res. 1992;52:385–388.

    CAS  PubMed  Google Scholar 

  37. Gressner AM, Lahme B, Mannherz HG, et al. TGF-beta-mediated hepatocellular apoptosis by rat and human hepatoma cells and primary rat hepatocytes. J Hepatol. 1997;26:1079–1092.

    Article  CAS  PubMed  Google Scholar 

  38. Valdes F, Murillo MM, Valverde AM, et al. Transforming growth factor-beta activates both pro-apoptotic and survival signals in fetal rat hepatocytes. Exp Cell Res. 2004;292:209–218.

    Article  CAS  PubMed  Google Scholar 

  39. Sanchez A, Alvarez AM, Lopez Pedrosa JM, et al. Apoptotic response to TGF-beta in fetal hepatocytes depends upon their state of differentiation. Exp Cell Res. 1999;252:281–291.

    Article  CAS  PubMed  Google Scholar 

  40. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–142.

    Article  CAS  PubMed  Google Scholar 

  41. Duff SE, Li C, Garland JM, Kumar S. CD105 is important for angiogenesis: evidence and potential applications. FASEB J. 2003;17:984–992.

    Article  CAS  PubMed  Google Scholar 

  42. Barbara NP, Wrana JL, Letarte M. Endoglin is an accessory protein that interacts with the signalling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem. 1999;274:584–594.

    Article  CAS  PubMed  Google Scholar 

  43. Yao Y, Pan Y, Chen J, et al. Endoglin (CD105) expression in angiogenesis of primary hepatocellular carcinoma: analysis using tissue microarrays and comparisons with CD34 and VEGF. Ann Clin Lab Sci. 2007;37:39–48.

    CAS  PubMed  Google Scholar 

  44. Ho JW, Poon RT, Sun CK, et al. Clinicopathological and prognostic implications of endoglin (CD105) expression in hepatocellular carcinoma and its adjacent non-tumorous liver. World J Gastroenerol. 2005;11:176–181.

    CAS  Google Scholar 

  45. Tsai JF, Jeng JE, Chuang LY, et al. Clinical evaluation of urinary transforming growth factor-beta1 and serum alpha-fetoprotein as tumor markers of hepatocellular carcinoma. Br J Cancer. 1997;75:1460–1466.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Yagmur E, Rizk M, Stanzel S, et al. Elevation of endoglin (CD105) concentrations in serum of patients with liver cirrhosis and carcinoma. Eur J Gastroenterol Hepatol. 2007;19:755–761.

    Article  CAS  PubMed  Google Scholar 

  47. Vinas O, Bataller R, Sancho-Bru P, et al. Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology. 2003;38:919–929.

    Article  CAS  PubMed  Google Scholar 

  48. Suvas S, Singh V, Sahdev S, et al. Distinct role of CD80 and CD86 in the regulation of the activation of B cell and B cell lymphoma. J Biol Chem. 2002;277:7766–7775.

    Article  CAS  PubMed  Google Scholar 

  49. Prazma CM, Yazawa N, Fujimoto Y, et al. CD83 expression is a sensitive marker of activation required for B cell and CD4+ T cell longevity in vivo. J Immunol. 2007;179:4550–4562.

    CAS  PubMed  Google Scholar 

  50. Fujimoto Y, Tu L, Miller AS, et al. CD83 expression influences CD4+ T cell development in the thymus. Cell. 2002;108:755–767.

    Article  CAS  PubMed  Google Scholar 

  51. Barral DC, Cavallari M, McCormick PJ, et al. CD1a and MHC class I follow a similar endocytic recycling pathway. Traffic. 2008;9:1446–1457.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (nos 30770994 and 81000904) and the Shanghai Committee of Science and Technology (no. 10411955200). The authors are grateful to Professor Scott L. Friedman in America for providing us with the LX-2 cell line and to Linzhen Zhang in Shanghai Changzheng Hospital for her technical support.

Conflicts of interest

We declare that we have no conflicts of interest in the submission of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Fang Gao.

Additional information

Xing Gu, Xin Ji, and Le-Hua Shi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, X., Ji, X., Shi, LH. et al. Transforming Growth Factor beta1 Gene Variation Leu10Pro Affects Secretion and Function in Hepatic Cells. Dig Dis Sci 57, 2901–2909 (2012). https://doi.org/10.1007/s10620-012-2238-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2238-9

Keywords

Navigation